latency.py 9.3 KB
Newer Older
W
whs 已提交
1 2
"""Define latency evaluators that evaluate the performance of mode on devices.
"""
W
wanghaoshuang 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

C
ceci3 已提交
17 18
from paddle.fluid import Program
from ..core import GraphWrapper, OpWrapper
W
wanghaoshuang 已提交
19 20 21 22
__all__ = ["LatencyEvaluator", "TableLatencyEvaluator"]


class LatencyEvaluator(object):
W
whs 已提交
23 24
    """Base class of latency evaluator.
    """
W
wanghaoshuang 已提交
25 26

    def latency(self, graph):
W
whs 已提交
27 28 29 30 31 32 33 34 35
        """Get latency of graph. It is an abstract method.

        Args:
            graph(GrapWrapper | Program): The graph to be evaluated.

        Returns:
            latency(float): The latency of given graph on current evaluator.
        """
        raise NotImplementedError('Abstract method.')
W
wanghaoshuang 已提交
36

C
ceci3 已提交
37
    def _get_ops_from_graph(self, graph, only_conv):
W
wanghaoshuang 已提交
38 39 40 41 42
        assert isinstance(graph, GraphWrapper)
        ops = []
        i = 0
        for op in graph.ops():
            if op.type() in ['conv2d', 'depthwise_conv2d']:
C
ceci3 已提交
43
                tmp = self._conv_op_args(op)
W
wanghaoshuang 已提交
44 45
            elif op.type() in [
                    'elementwise_add', 'elementwise_mul', 'elementwise_max'
C
ceci3 已提交
46
            ] and only_conv == False:
C
ceci3 已提交
47
                tmp = self._eltwise_op_args(op)
W
wanghaoshuang 已提交
48 49 50
            elif op.type() in [
                    'relu', 'prelu', 'sigmoid', 'relu6', 'elu', 'brelu',
                    'leaky_relu'
C
ceci3 已提交
51
            ] and only_conv == False:
C
ceci3 已提交
52
                tmp = self._activation_op_args(op)
C
ceci3 已提交
53
            elif op.type() == 'batch_norm' and only_conv == False:
C
ceci3 已提交
54
                tmp = self._batch_norm_op_args(op)
C
ceci3 已提交
55
            elif op.type() == 'pool2d' and only_conv == False:
C
ceci3 已提交
56
                tmp = self._pooling_op_args(op)
C
ceci3 已提交
57
            elif op.type() == 'softmax' and only_conv == False:
C
ceci3 已提交
58
                tmp = self._softmax_op_args(op)
C
ceci3 已提交
59
            elif op.type() == 'mul' and only_conv == False:
C
ceci3 已提交
60
                tmp = self._fc_op_args(op)
W
wanghaoshuang 已提交
61 62 63 64 65 66
            else:
                tmp = None
            if tmp:
                ops.append(tmp)
        return ops

C
ceci3 已提交
67
    def _conv_op_args(self, op):
W
wanghaoshuang 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81
        assert isinstance(op, OpWrapper)
        tmp, res = [], []
        # op_name
        tmp.append('conv')
        # flag_bias
        if len(op.inputs('Bias')) == 0:
            tmp.append(0)
        else:
            tmp.append(1)
        # flag_relu
        tmp.append(int(op.attr('fuse_relu')))
        # batch size
        tmp.append(1)
        # channels, height, width
C
ceci3 已提交
82
        in_shapes = op.inputs('Input')[0].shape()
W
wanghaoshuang 已提交
83 84 85
        tmp = tmp + [int(in_shapes[1]), int(in_shapes[2]), int(in_shapes[3])]

        # output channels
C
ceci3 已提交
86
        w_shapes = op.inputs('Filter')[0].shape()
W
wanghaoshuang 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
        tmp.append(int(w_shapes[0]))

        # group
        tmp.append(int(op.attr('groups')))

        # kernel size
        tmp.append(int(w_shapes[2]))
        if w_shapes[2] != w_shapes[3]:
            res.append(int(w_shapes[3]))

        # padding
        paddings = op.attr('paddings')
        tmp.append(int(paddings[0]))
        if paddings[0] != paddings[1]:
            res.append(int(paddings[0]))

        # strides
        strides = op.attr('strides')
        tmp.append(int(strides[0]))
        if strides[0] != strides[1]:
            res.append(int(strides[1]))

        # dilations
        dilations = op.attr('dilations')
        tmp.append(int(dilations[0]))
        if dilations[0] != dilations[1]:
            res.append(int(dilations[1]))
        tmp = tmp + res
        return tmp

C
ceci3 已提交
117
    def _batch_norm_op_args(self, op):
W
wanghaoshuang 已提交
118 119 120 121 122 123 124 125 126 127 128
        tmp = []
        # op name
        tmp.append('batch_norm')
        # activation type
        if not op.attr('fuse_with_relu'):
            tmp.append('None')
        else:
            tmp.append('relu')
        # batch size
        tmp.append(1)
        # input channels, height, width
C
ceci3 已提交
129
        in_shapes = op.inputs("X")[0].shape()
W
wanghaoshuang 已提交
130 131 132
        tmp = tmp + [int(in_shapes[1]), int(in_shapes[2]), int(in_shapes[3])]
        return tmp

C
ceci3 已提交
133
    def _eltwise_op_args(self, op):
W
wanghaoshuang 已提交
134 135 136 137 138 139 140 141 142 143 144 145
        # op name
        tmp = ['eltwise']
        # elementwise type, TODO: add more ops
        if op.type() == 'elementwise_mul':
            tmp.append(1)
        elif op.type() == 'elementwise_add':
            tmp.append(2)
        else:
            tmp.append(3)
        # batch size
        tmp.append(1)
        # input channels, height, width 
C
ceci3 已提交
146
        in_shapes = op.inputs('X')[0].shape()
W
wanghaoshuang 已提交
147 148 149 150 151 152 153
        while len(in_shapes) < 4:
            in_shapes = in_shapes + (1, )

        for i in range(1, len(in_shapes)):
            tmp.append(int(in_shapes[i]))
        return tmp

C
ceci3 已提交
154
    def _activation_op_args(self, op):
W
wanghaoshuang 已提交
155 156 157 158 159 160
        tmp = []
        # activation type
        tmp.append(op.type())
        # batch size
        tmp.append(1)
        # input channels, height, width
C
ceci3 已提交
161
        in_shapes = op.inputs('X')[0].shape()
W
wanghaoshuang 已提交
162 163 164 165 166 167 168
        while len(in_shapes) < 4:
            in_shapes = in_shapes + (1, )

        for i in range(1, len(in_shapes)):
            tmp.append(int(in_shapes[i]))
        return tmp

C
ceci3 已提交
169
    def _pooling_op_args(self, op):
W
wanghaoshuang 已提交
170 171 172 173 174 175 176 177
        tmp, res = [], []
        # op name
        tmp.append('pooling')
        # global pooling
        tmp.append(int(op.attr('global_pooling')))
        # batch size
        tmp.append(1)
        # channels, height, width
C
ceci3 已提交
178
        in_shapes = op.inputs('X')[0].shape()
W
wanghaoshuang 已提交
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
        tmp = tmp + [int(in_shapes[1]), int(in_shapes[2]), int(in_shapes[3])]
        # kernel size
        ksize = op.attr('ksize')
        tmp.append(int(ksize[0]))
        if ksize[0] != ksize[1]:
            res.append(int(ksize[1]))

        # padding
        paddings = op.attr('paddings')
        tmp.append(int(paddings[0]))
        if paddings[0] != paddings[1]:
            res.append(int(paddings[1]))

        # stride
        strides = op.attr('strides')
        tmp.append(int(strides[0]))
        if strides[0] != strides[1]:
            res.append(int(strides[1]))

        # ceil mode
        tmp.append(int(op.attr('ceil_mode')))

        # pool type
        pool_type = op.attr('pooling_type')
        exclusive = op.attr('exclusive')
        if pool_type == 'max' and (not exclusive):
            tmp.append(1)
        elif pool_type == 'avg' and (not exclusive):
            tmp.append(2)
        else:
            tmp.append(3)

        tmp = tmp + res
        return tmp

C
ceci3 已提交
214
    def _softmax_op_args(self, op):
W
wanghaoshuang 已提交
215 216 217 218 219 220 221
        # op name
        tmp = ['softmax']
        # axis
        tmp.append(op.attr('axis'))
        # batch size
        tmp.append(1)
        # input channels, height, width
C
ceci3 已提交
222
        in_shapes = op.inputs('X')[0].shape()
W
wanghaoshuang 已提交
223 224 225 226 227 228 229 230
        while len(in_shapes) < 4:
            in_shapes = in_shapes + (1, )

        for i in range(1, len(in_shapes)):
            tmp.append(int(in_shapes[i]))

        return tmp

C
ceci3 已提交
231
    def _fc_op_args(self, op):
W
wanghaoshuang 已提交
232 233 234 235 236 237 238 239 240 241
        # op name
        tmp = ['conv']
        # flag bias
        tmp.append(0)
        # flag relu
        tmp.append(0)
        # batch size 
        tmp.append(1)
        # input channels, height, width
        channels = 1
C
ceci3 已提交
242
        in_shape = op.inputs('X')[0].shape()
W
wanghaoshuang 已提交
243 244 245 246
        for i in range(1, len(in_shape)):
            channels *= in_shape[i]
        tmp = tmp + [int(channels), 1, 1]
        # output channels
C
ceci3 已提交
247
        tmp.append(int(op.outputs('Out')[0].shape()[1]))
W
wanghaoshuang 已提交
248 249 250 251 252 253
        # groups, kernel size, padding, stride, dilation
        tmp = tmp + [1, 1, 0, 1, 1]
        return tmp


class TableLatencyEvaluator(LatencyEvaluator):
W
whs 已提交
254 255 256 257 258 259 260
    """The evaluator used to get graph's latency on some devices and infer engines.

    Args:
      table_file(str): The path of file that records the devices latency of operators.
      delimiter(str): The delimiter used in `table_file`.
    """

W
wanghaoshuang 已提交
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
    def __init__(self, table_file, delimiter=","):
        self._table = self._load_table(table_file)
        self._delimiter = delimiter

    def _load_table(self, table_file):
        table = {}
        with open(table_file) as f:
            line = f.readline()
            self.infer_engine_name, self.device_name, self.create_time = line.strip(
            ).split("\t")
            for line in f:
                op_str, latency = line.strip().split("\t")
                table[op_str] = float(latency)
        return table

    def _op_latency(self, op_str):
        assert op_str in self._table
        return self._table[op_str]

C
ceci3 已提交
280
    def latency(self, graph, only_conv=True):
W
whs 已提交
281 282
        """Get latency of target graph.

W
wanghaoshuang 已提交
283
        Args:
W
whs 已提交
284 285 286
            graph(GrapWrapper | Program): The graph to be evaluated.
            only_conv(bool): only evaluated convolution layer if `only_conv` is true. Default: True.

W
wanghaoshuang 已提交
287 288 289 290 291 292 293
        Returns:
            latency(float): The latency of given graph on current evaluator.
        """
        total_latency = 0
        if isinstance(graph, Program):
            graph = GraphWrapper(graph)
        assert isinstance(graph, GraphWrapper)
C
ceci3 已提交
294
        for op in self._get_ops_from_graph(graph, only_conv):
C
ceci3 已提交
295 296
            total_latency += self._op_latency(
                self._delimiter.join(map(lambda x: str(x), op)))
W
wanghaoshuang 已提交
297
        return total_latency