infer.py 9.3 KB
Newer Older
S
slf12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
import argparse
import sys
import time
import math
import unittest
import contextlib
import numpy as np
import six
import paddle.fluid as fluid
import paddle
import net
import utils
sys.path.append(sys.path[0] + "/../../../")
from paddleslim.quant import quant_embedding


def parse_args():
    parser = argparse.ArgumentParser("PaddlePaddle Word2vec infer example")
    parser.add_argument(
        '--dict_path',
        type=str,
        default='./data/data_c/1-billion_dict_word_to_id_',
        help="The path of dic")
    parser.add_argument(
        '--infer_epoch',
        action='store_true',
        required=False,
        default=False,
        help='infer by epoch')
    parser.add_argument(
        '--infer_step',
        action='store_true',
        required=False,
        default=False,
        help='infer by step')
    parser.add_argument(
        '--test_dir', type=str, default='test_data', help='test file address')
    parser.add_argument(
        '--print_step', type=int, default='500000', help='print step')
    parser.add_argument(
        '--start_index', type=int, default='0', help='start index')
    parser.add_argument(
        '--start_batch', type=int, default='1', help='start index')
    parser.add_argument(
        '--end_batch', type=int, default='13', help='start index')
    parser.add_argument(
        '--last_index', type=int, default='100', help='last index')
    parser.add_argument(
        '--model_dir', type=str, default='model', help='model dir')
    parser.add_argument(
        '--use_cuda', type=int, default='0', help='whether use cuda')
    parser.add_argument(
        '--batch_size', type=int, default='5', help='batch_size')
    parser.add_argument(
        '--emb_size', type=int, default='64', help='batch_size')
    parser.add_argument(
        '--emb_quant',
        type=bool,
        default=False,
S
slf12 已提交
60
        help='whether to quant embedding parameter')
S
slf12 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
    args = parser.parse_args()
    return args


def infer_epoch(args, vocab_size, test_reader, use_cuda, i2w):
    """ inference function """
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    exe = fluid.Executor(place)
    emb_size = args.emb_size
    batch_size = args.batch_size
    with fluid.scope_guard(fluid.Scope()):
        main_program = fluid.Program()
        with fluid.program_guard(main_program):
            values, pred = net.infer_network(vocab_size, emb_size)
            for epoch in range(start_index, last_index + 1):
                copy_program = main_program.clone()
                model_path = model_dir + "/pass-" + str(epoch)
                fluid.io.load_params(
                    executor=exe,
                    dirname=model_path,
                    main_program=copy_program)
                if args.emb_quant:
L
Liufang Sang 已提交
83 84 85 86 87 88
                    config = {
                        'quantize_op_types': 'lookup_table',
                        'lookup_table': {
                            'quantize_type': 'abs_max'
                        },
                    }
S
slf12 已提交
89
                    copy_program = quant_embedding(copy_program, place, config)
S
slf12 已提交
90 91 92 93
                    fluid.io.save_persistables(
                        exe,
                        './output_quant/pass-' + str(epoch),
                        main_program=copy_program)
S
slf12 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236

                accum_num = 0
                accum_num_sum = 0.0
                t0 = time.time()
                step_id = 0
                for data in test_reader():
                    step_id += 1
                    b_size = len([dat[0] for dat in data])
                    wa = np.array(
                        [dat[0] for dat in data]).astype("int64").reshape(
                            b_size, 1)
                    wb = np.array(
                        [dat[1] for dat in data]).astype("int64").reshape(
                            b_size, 1)
                    wc = np.array(
                        [dat[2] for dat in data]).astype("int64").reshape(
                            b_size, 1)

                    label = [dat[3] for dat in data]
                    input_word = [dat[4] for dat in data]
                    para = exe.run(copy_program,
                                   feed={
                                       "analogy_a": wa,
                                       "analogy_b": wb,
                                       "analogy_c": wc,
                                       "all_label":
                                       np.arange(vocab_size).reshape(
                                           vocab_size, 1).astype("int64"),
                                   },
                                   fetch_list=[pred.name, values],
                                   return_numpy=False)
                    pre = np.array(para[0])
                    val = np.array(para[1])
                    for ii in range(len(label)):
                        top4 = pre[ii]
                        accum_num_sum += 1
                        for idx in top4:
                            if int(idx) in input_word[ii]:
                                continue
                            if int(idx) == int(label[ii][0]):
                                accum_num += 1
                            break
                    if step_id % 1 == 0:
                        print("step:%d %d " % (step_id, accum_num))

                print("epoch:%d \t acc:%.3f " %
                      (epoch, 1.0 * accum_num / accum_num_sum))


def infer_step(args, vocab_size, test_reader, use_cuda, i2w):
    """ inference function """
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    exe = fluid.Executor(place)
    emb_size = args.emb_size
    batch_size = args.batch_size
    with fluid.scope_guard(fluid.Scope()):
        main_program = fluid.Program()
        with fluid.program_guard(main_program):
            values, pred = net.infer_network(vocab_size, emb_size)
            for epoch in range(start_index, last_index + 1):
                for batchid in range(args.start_batch, args.end_batch):
                    copy_program = main_program.clone()
                    model_path = model_dir + "/pass-" + str(epoch) + (
                        '/batch-' + str(batchid * args.print_step))
                    fluid.io.load_params(
                        executor=exe,
                        dirname=model_path,
                        main_program=copy_program)
                    accum_num = 0
                    accum_num_sum = 0.0
                    t0 = time.time()
                    step_id = 0
                    for data in test_reader():
                        step_id += 1
                        b_size = len([dat[0] for dat in data])
                        wa = np.array(
                            [dat[0] for dat in data]).astype("int64").reshape(
                                b_size, 1)
                        wb = np.array(
                            [dat[1] for dat in data]).astype("int64").reshape(
                                b_size, 1)
                        wc = np.array(
                            [dat[2] for dat in data]).astype("int64").reshape(
                                b_size, 1)

                        label = [dat[3] for dat in data]
                        input_word = [dat[4] for dat in data]
                        para = exe.run(
                            copy_program,
                            feed={
                                "analogy_a": wa,
                                "analogy_b": wb,
                                "analogy_c": wc,
                                "all_label":
                                np.arange(vocab_size).reshape(vocab_size, 1),
                            },
                            fetch_list=[pred.name, values],
                            return_numpy=False)
                        pre = np.array(para[0])
                        val = np.array(para[1])
                        for ii in range(len(label)):
                            top4 = pre[ii]
                            accum_num_sum += 1
                            for idx in top4:
                                if int(idx) in input_word[ii]:
                                    continue
                                if int(idx) == int(label[ii][0]):
                                    accum_num += 1
                                break
                        if step_id % 1 == 0:
                            print("step:%d %d " % (step_id, accum_num))
                    print("epoch:%d \t acc:%.3f " %
                          (epoch, 1.0 * accum_num / accum_num_sum))
                    t1 = time.time()


if __name__ == "__main__":
    args = parse_args()
    start_index = args.start_index
    last_index = args.last_index
    test_dir = args.test_dir
    model_dir = args.model_dir
    batch_size = args.batch_size
    dict_path = args.dict_path
    use_cuda = True if args.use_cuda else False
    print("start index: ", start_index, " last_index:", last_index)
    vocab_size, test_reader, id2word = utils.prepare_data(
        test_dir, dict_path, batch_size=batch_size)
    print("vocab_size:", vocab_size)
    if args.infer_step:
        infer_step(
            args,
            vocab_size,
            test_reader=test_reader,
            use_cuda=use_cuda,
            i2w=id2word)
    else:
        infer_epoch(
            args,
            vocab_size,
            test_reader=test_reader,
            use_cuda=use_cuda,
            i2w=id2word)