model_utils.py 7.5 KB
Newer Older
X
Xing Wu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
util tools
"""
from __future__ import print_function
import os
import sys
import numpy as np
import paddle.fluid as fluid
import yaml
import io


def str2bool(v):
    """
    argparse does not support True or False in python
    """
    return v.lower() in ("true", "t", "1")


class ArgumentGroup(object):
    """
    Put arguments to one group
    """

    def __init__(self, parser, title, des):
        """none"""
        self._group = parser.add_argument_group(title=title, description=des)

    def add_arg(self, name, type, default, help, **kwargs):
        """ Add argument """
        type = str2bool if type == bool else type
        self._group.add_argument(
            "--" + name,
            default=default,
            type=type,
            help=help + ' Default: %(default)s.',
            **kwargs)


def load_yaml(parser, file_name, **kwargs):
    with io.open(file_name, 'r', encoding='utf8') as f:
        args = yaml.load(f)
        for title in args:
            group = parser.add_argument_group(title=title, description='')
            for name in args[title]:
                _type = type(args[title][name]['val'])
                _type = str2bool if _type == bool else _type
                group.add_argument(
                    "--" + name,
                    default=args[title][name]['val'],
                    type=_type,
                    help=args[title][name]['meaning'] +
                    ' Default: %(default)s.',
                    **kwargs)


def print_arguments(args):
    """none"""
    print('-----------  Configuration Arguments -----------')
    for arg, value in sorted(vars(args).items()):
        print('%s: %s' % (arg, value))
    print('------------------------------------------------')


def to_str(string, encoding="utf-8"):
    """convert to str for print"""
    if sys.version_info.major == 3:
        if isinstance(string, bytes):
            return string.decode(encoding)
    elif sys.version_info.major == 2:
        if isinstance(string, unicode):
            if os.name == 'nt':
                return string
            else:
                return string.encode(encoding)
    return string


def to_lodtensor(data, place):
    """
    Convert data in list into lodtensor.
    """
    seq_lens = [len(seq) for seq in data]
    cur_len = 0
    lod = [cur_len]
    for l in seq_lens:
        cur_len += l
        lod.append(cur_len)
    flattened_data = np.concatenate(data, axis=0).astype("int64")
    flattened_data = flattened_data.reshape([len(flattened_data), 1])
    res = fluid.Tensor()
    res.set(flattened_data, place)
    res.set_lod([lod])
    return res


def parse_result(words, crf_decode, dataset):
    """ parse result """
    offset_list = (crf_decode.lod())[0]
    words = np.array(words)
    crf_decode = np.array(crf_decode)
    batch_size = len(offset_list) - 1

    batch_out = []
    for sent_index in range(batch_size):
        begin, end = offset_list[sent_index], offset_list[sent_index + 1]
        sent = [dataset.id2word_dict[str(id[0])] for id in words[begin:end]]
        tags = [
            dataset.id2label_dict[str(id[0])] for id in crf_decode[begin:end]
        ]

        sent_out = []
        tags_out = []
        parital_word = ""
        for ind, tag in enumerate(tags):
            # for the first word
            if parital_word == "":
                parital_word = sent[ind]
                tags_out.append(tag.split('-')[0])
                continue

            # for the beginning of word
            if tag.endswith("-B") or (tag == "O" and tags[ind - 1] != "O"):
                sent_out.append(parital_word)
                tags_out.append(tag.split('-')[0])
                parital_word = sent[ind]
                continue

            parital_word += sent[ind]

        # append the last word, except for len(tags)=0
        if len(sent_out) < len(tags_out):
            sent_out.append(parital_word)

        batch_out.append([sent_out, tags_out])
    return batch_out


def parse_padding_result(words, crf_decode, seq_lens, dataset):
    """ parse padding result """
    words = np.squeeze(words)
    batch_size = len(seq_lens)

    batch_out = []
    for sent_index in range(batch_size):

        sent = [
            dataset.id2word_dict[str(id)]
            for id in words[sent_index][1:seq_lens[sent_index] - 1]
        ]
        tags = [
            dataset.id2label_dict[str(id)]
            for id in crf_decode[sent_index][1:seq_lens[sent_index] - 1]
        ]

        sent_out = []
        tags_out = []
        parital_word = ""
        for ind, tag in enumerate(tags):
            # for the first word
            if parital_word == "":
                parital_word = sent[ind]
                tags_out.append(tag.split('-')[0])
                continue

            # for the beginning of word
            if tag.endswith("-B") or (tag == "O" and tags[ind - 1] != "O"):
                sent_out.append(parital_word)
                tags_out.append(tag.split('-')[0])
                parital_word = sent[ind]
                continue

            parital_word += sent[ind]

        # append the last word, except for len(tags)=0
        if len(sent_out) < len(tags_out):
            sent_out.append(parital_word)

        batch_out.append([sent_out, tags_out])
    return batch_out


def init_checkpoint(exe, init_checkpoint_path, main_program):
    """
    Init CheckPoint
    """
    assert os.path.exists(
        init_checkpoint_path), "[%s] cann't be found." % init_checkpoint_path

    def existed_persitables(var):
        """
        If existed presitabels
        """
        if not fluid.io.is_persistable(var):
            return False
        if os.path.exists(os.path.join(init_checkpoint_path, var.name)):
            print("INIT {}".format(var.name))
            return True
        else:
            print("SKIP {}".format(var.name))
            return False

    fluid.io.load_vars(
        exe,
        init_checkpoint_path,
        main_program=main_program,
        predicate=existed_persitables)
    print("Load model from {}".format(init_checkpoint_path))


def init_pretraining_params(exe,
                            pretraining_params_path,
                            main_program,
                            use_fp16=False):
    """load params of pretrained model, NOT including moment, learning_rate"""
    assert os.path.exists(pretraining_params_path
                          ), "[%s] cann't be found." % pretraining_params_path

    def _existed_params(var):
        if not isinstance(var, fluid.framework.Parameter):
            return False
        if os.path.exists(os.path.join(pretraining_params_path, var.name)):
            print("INIT {}".format(var.name))
            return True
        else:
            print("SKIP {}".format(var.name))
            return False

    fluid.io.load_vars(
        exe,
        pretraining_params_path,
        main_program=main_program,
        predicate=_existed_params)
    print("Load pretraining parameters from {}.".format(
        pretraining_params_path))