mobilenet_v3.py 9.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
import paddle.fluid as fluid
from paddle.fluid.initializer import MSRA
from paddle.fluid.param_attr import ParamAttr
import math

__all__ = [
    'MobileNetV3', 'MobileNetV3_small_x0_25', 'MobileNetV3_small_x0_5',
    'MobileNetV3_small_x0_75', 'MobileNetV3_small_x1_0',
    'MobileNetV3_small_x1_25', 'MobileNetV3_large_x0_25',
    'MobileNetV3_large_x0_5', 'MobileNetV3_large_x0_75',
    'MobileNetV3_large_x1_0', 'MobileNetV3_large_x1_25',
    'MobileNetV3_large_x2_0'
]


class MobileNetV3():
    def __init__(self, scale=1.0, model_name='small'):
        self.scale = scale
        self.inplanes = 16
        if model_name == "large":
            self.cfg = [
                # k, exp, c,  se,     nl,  s,
                [3, 16, 16, False, 'relu', 1],
                [3, 64, 24, False, 'relu', 2],
                [3, 72, 24, False, 'relu', 1],
                [5, 72, 40, True, 'relu', 2],
                [5, 120, 40, True, 'relu', 1],
                [5, 120, 40, True, 'relu', 1],
                [3, 240, 80, False, 'hard_swish', 2],
                [3, 200, 80, False, 'hard_swish', 1],
                [3, 184, 80, False, 'hard_swish', 1],
                [3, 184, 80, False, 'hard_swish', 1],
                [3, 480, 112, True, 'hard_swish', 1],
                [3, 672, 112, True, 'hard_swish', 1],
                [5, 672, 160, True, 'hard_swish', 2],
                [5, 960, 160, True, 'hard_swish', 1],
                [5, 960, 160, True, 'hard_swish', 1],
            ]
            self.cls_ch_squeeze = 960
            self.cls_ch_expand = 1280
        elif model_name == "small":
            self.cfg = [
                # k, exp, c,  se,     nl,  s,
                [3, 16, 16, True, 'relu', 2],
                [3, 72, 24, False, 'relu', 2],
                [3, 88, 24, False, 'relu', 1],
                [5, 96, 40, True, 'hard_swish', 2],
                [5, 240, 40, True, 'hard_swish', 1],
                [5, 240, 40, True, 'hard_swish', 1],
                [5, 120, 48, True, 'hard_swish', 1],
                [5, 144, 48, True, 'hard_swish', 1],
                [5, 288, 96, True, 'hard_swish', 2],
                [5, 576, 96, True, 'hard_swish', 1],
                [5, 576, 96, True, 'hard_swish', 1],
            ]
            self.cls_ch_squeeze = 576
            self.cls_ch_expand = 1280
        else:
            raise NotImplementedError

    def net(self, input, class_dim=1000):
        scale = self.scale
        inplanes = self.inplanes
        cfg = self.cfg
        cls_ch_squeeze = self.cls_ch_squeeze
        cls_ch_expand = self.cls_ch_expand

        #conv1
        conv = self.conv_bn_layer(
            input,
            filter_size=3,
            #num_filters=int(scale*inplanes),
            num_filters=inplanes if scale <= 1.0 else int(inplanes * scale),
            stride=2,
            padding=1,
            num_groups=1,
            if_act=True,
            act='hard_swish',
            name='conv1')
        print(conv.shape)
        i = 0
        for layer_cfg in cfg:
            conv = self.residual_unit(
                input=conv,
                num_in_filter=inplanes,
                num_mid_filter=int(scale * layer_cfg[1]),
                num_out_filter=int(scale * layer_cfg[2]),
                act=layer_cfg[4],
                stride=layer_cfg[5],
                filter_size=layer_cfg[0],
                use_se=layer_cfg[3],
                name='conv' + str(i + 2))

            inplanes = int(scale * layer_cfg[2])
            i += 1

        conv = self.conv_bn_layer(
            input=conv,
            filter_size=1,
            num_filters=int(scale * cls_ch_squeeze),
            stride=1,
            padding=0,
            num_groups=1,
            if_act=True,
            act='hard_swish',
            name='conv_last')
        conv = fluid.layers.pool2d(
            input=conv, pool_type='avg', global_pooling=True, use_cudnn=False)
        conv = fluid.layers.conv2d(
            input=conv,
            num_filters=cls_ch_expand,
            filter_size=1,
            stride=1,
            padding=0,
            act=None,
            param_attr=ParamAttr(name='last_1x1_conv_weights'),
            bias_attr=False)
        #conv = fluid.layers.hard_swish(conv)
        conv = self.hard_swish(conv)
        out = fluid.layers.fc(input=conv,
                              size=class_dim,
                              act='softmax',
                              param_attr=ParamAttr(name='fc_weights'),
                              bias_attr=ParamAttr(name='fc_offset'))
        return out

    def conv_bn_layer(self,
                      input,
                      filter_size,
                      num_filters,
                      stride,
                      padding,
                      num_groups=1,
                      if_act=True,
                      act=None,
                      name=None,
                      use_cudnn=True):
        conv = fluid.layers.conv2d(
            input=input,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=padding,
            groups=num_groups,
            act=None,
            use_cudnn=use_cudnn,
            param_attr=ParamAttr(name=name + '_weights'),
            bias_attr=False)
        bn_name = name + '_bn'
        bn = fluid.layers.batch_norm(
            input=conv,
            param_attr=ParamAttr(
                name=bn_name + "_scale",
                regularizer=fluid.regularizer.L2DecayRegularizer(
                    regularization_coeff=0.0)),
            bias_attr=ParamAttr(
                name=bn_name + "_offset",
                regularizer=fluid.regularizer.L2DecayRegularizer(
                    regularization_coeff=0.0)),
            moving_mean_name=bn_name + '_mean',
            moving_variance_name=bn_name + '_variance')
        if if_act:
            if act == 'relu':
                bn = fluid.layers.relu(bn)
            elif act == 'hard_swish':
                #bn = fluid.layers.hard_swish(bn)
                bn = self.hard_swish(bn)
        return bn

    def hard_swish(self, x):
        return x * fluid.layers.relu6(x + 3) / 6.

    def se_block(self, input, num_out_filter, ratio=4, name=None):
        num_mid_filter = int(num_out_filter // ratio)
        pool = fluid.layers.pool2d(
            input=input, pool_type='avg', global_pooling=True, use_cudnn=False)
        conv1 = fluid.layers.conv2d(
            input=pool,
            filter_size=1,
            num_filters=num_mid_filter,
            act='relu',
            param_attr=ParamAttr(name=name + '_1_weights'),
            bias_attr=ParamAttr(name=name + '_1_offset'))
        conv2 = fluid.layers.conv2d(
            input=conv1,
            filter_size=1,
            num_filters=num_out_filter,
            act='hard_sigmoid',
            param_attr=ParamAttr(name=name + '_2_weights'),
            bias_attr=ParamAttr(name=name + '_2_offset'))

        scale = fluid.layers.elementwise_mul(x=input, y=conv2, axis=0)
        return scale

    def residual_unit(self,
                      input,
                      num_in_filter,
                      num_mid_filter,
                      num_out_filter,
                      stride,
                      filter_size,
                      act=None,
                      use_se=False,
                      name=None):

        input_data = input
        conv0 = self.conv_bn_layer(
            input=input,
            filter_size=1,
            num_filters=num_mid_filter,
            stride=1,
            padding=0,
            if_act=True,
            act=act,
            name=name + '_expand')

        conv1 = self.conv_bn_layer(
            input=conv0,
            filter_size=filter_size,
            num_filters=num_mid_filter,
            stride=stride,
            padding=int((filter_size - 1) // 2),
            if_act=True,
            act=act,
            num_groups=num_mid_filter,
            use_cudnn=False,
            name=name + '_depthwise')

        if use_se:
            with fluid.name_scope('se_block_skip'):
                conv1 = self.se_block(
                    input=conv1,
                    num_out_filter=num_mid_filter,
                    name=name + '_se')

        conv2 = self.conv_bn_layer(
            input=conv1,
            filter_size=1,
            num_filters=num_out_filter,
            stride=1,
            padding=0,
            if_act=False,
            name=name + '_linear')
        if num_in_filter != num_out_filter or stride != 1:
            return conv2
        else:
            return fluid.layers.elementwise_add(
                x=input_data, y=conv2, act=None)


def MobileNetV3_small_x0_25():
    model = MobileNetV3(model_name='small', scale=0.25)
    return model


def MobileNetV3_small_x0_5():
    model = MobileNetV3(model_name='small', scale=0.5)
    return model


def MobileNetV3_small_x0_75():
    model = MobileNetV3(model_name='small', scale=0.75)
    return model


def MobileNetV3_small_x1_0():
    model = MobileNetV3(model_name='small', scale=1.0)
    return model


def MobileNetV3_small_x1_25():
    model = MobileNetV3(model_name='small', scale=1.25)
    return model


def MobileNetV3_large_x0_25():
    model = MobileNetV3(model_name='large', scale=0.25)
    return model


def MobileNetV3_large_x0_5():
    model = MobileNetV3(model_name='large', scale=0.5)
    return model


def MobileNetV3_large_x0_75():
    model = MobileNetV3(model_name='large', scale=0.75)
    return model


def MobileNetV3_large_x1_0():
    model = MobileNetV3(model_name='large', scale=1.0)
    return model


def MobileNetV3_large_x1_25():
    model = MobileNetV3(model_name='large', scale=1.25)
    return model


def MobileNetV3_large_x2_0():
    model = MobileNetV3(model_name='large', scale=2.0)
    return model