mobile_generator.py 4.2 KB
Newer Older
C
update  
ceci3 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
C
ceci3 已提交
14 15 16
import functools
import paddle.fluid as fluid
from paddle.fluid.dygraph.nn import InstanceNorm, Conv2D, Conv2DTranspose
C
update  
ceci3 已提交
17 18
from paddle.nn.layer import ReLU, Pad2D
from paddleslim.models.dygraph.modules import MobileResnetBlock
C
ceci3 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126

use_cudnn = False


class MobileResnetGenerator(fluid.dygraph.Layer):
    def __init__(self,
                 input_channel,
                 output_nc,
                 ngf,
                 norm_layer=InstanceNorm,
                 dropout_rate=0,
                 n_blocks=9,
                 padding_type='reflect'):
        super(MobileResnetGenerator, self).__init__()
        if type(norm_layer) == functools.partial:
            use_bias = norm_layer.func == InstanceNorm
        else:
            use_bias = norm_layer == InstanceNorm

        self.model = fluid.dygraph.LayerList([
            Pad2D(
                paddings=[3, 3, 3, 3], mode="reflect"), Conv2D(
                    input_channel,
                    int(ngf),
                    filter_size=7,
                    padding=0,
                    use_cudnn=use_cudnn,
                    bias_attr=use_bias), norm_layer(ngf), ReLU()
        ])

        n_downsampling = 2
        for i in range(n_downsampling):
            mult = 2**i
            self.model.extend([
                Conv2D(
                    ngf * mult,
                    ngf * mult * 2,
                    filter_size=3,
                    stride=2,
                    padding=1,
                    use_cudnn=use_cudnn,
                    bias_attr=use_bias), norm_layer(ngf * mult * 2), ReLU()
            ])

        mult = 2**n_downsampling

        n_blocks1 = n_blocks // 3
        n_blocks2 = n_blocks1
        n_blocks3 = n_blocks - n_blocks1 - n_blocks2

        for i in range(n_blocks1):
            self.model.extend([
                MobileResnetBlock(
                    ngf * mult,
                    ngf * mult,
                    padding_type=padding_type,
                    norm_layer=norm_layer,
                    dropout_rate=dropout_rate,
                    use_bias=use_bias)
            ])

        for i in range(n_blocks2):
            self.model.extend([
                MobileResnetBlock(
                    ngf * mult,
                    ngf * mult,
                    padding_type=padding_type,
                    norm_layer=norm_layer,
                    dropout_rate=dropout_rate,
                    use_bias=use_bias)
            ])

        for i in range(n_blocks3):
            self.model.extend([
                MobileResnetBlock(
                    ngf * mult,
                    ngf * mult,
                    padding_type=padding_type,
                    norm_layer=norm_layer,
                    dropout_rate=dropout_rate,
                    use_bias=use_bias)
            ])

        for i in range(n_downsampling):
            mult = 2**(n_downsampling - i)
            output_size = (i + 1) * 128
            self.model.extend([
                Conv2DTranspose(
                    ngf * mult,
                    int(ngf * mult / 2),
                    filter_size=3,
                    output_size=output_size,
                    stride=2,
                    padding=1,
                    use_cudnn=use_cudnn,
                    bias_attr=use_bias), norm_layer(int(ngf * mult / 2)),
                ReLU()
            ])

        self.model.extend([Pad2D(paddings=[3, 3, 3, 3], mode="reflect")])
        self.model.extend([Conv2D(ngf, output_nc, filter_size=7, padding=0)])

    def forward(self, inputs):
        y = inputs
        for sublayer in self.model:
            y = sublayer(y)
        y = fluid.layers.tanh(y)
        return y