gptq.py 6.5 KB
Newer Older
C
Chang Xu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
# Copyright (c) 2023  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
import time
import numpy as np
import paddle
import paddle.nn as nn
from paddle.distributed.fleet.meta_parallel import ColumnParallelLinear, RowParallelLinear

from .utils import compute_scales
__all__ = ['GPTQ']


class GPTQ(nn.Layer):
    def __init__(self,
                 layer,
                 quant_bits=4,
                 weight_quant_method='abs_max_channel_wise'):
        '''
        The implementation of GPTQ(https://arxiv.org/abs/2210.17323). 
        The codes here are based on https://github.com/IST-DASLab/gptq.
        
        Args:
        layer (paddle.nn.Layer): Layer object.
        quant_bits (int, optional): Number of bits to quantize the weight. Default: 4.
        weight_quant_method (str, optional): Method of weight quantization. Choosen from abs_max, abs_max_channel_wise and avg. Default: abs_max_channel_wise.

        Examples:
        .. code-block:: python
        
        from paddleslim.quant.advanced import GPTQ
        for cur_name, cur_layer in model.named_sublayers():
            if type(cur_layer) == paddle.nn.Linear:
                gptq_layer = GPTQ(cur_layer)
                # sample data
                for data in dataloader():
                    model(data)
                # quant weight
                gptq_layer.fasterquant()  
        '''
        super(GPTQ, self).__init__()
        self.layer = layer
        assert hasattr(layer,
                       'weight'), "Layer {} has no attribute 'weight'".format(
                           layer.full_name())
        assert type(self.layer) in [
            nn.Linear, ColumnParallelLinear, RowParallelLinear
        ], "Currently, GPTQ only supports linear layer and ColumnParallelLinear/RowParallelLinear layer"

        weight = layer.weight.t()

        self.rows = weight.shape[0]
        self.columns = weight.shape[1]
        self.hessian = paddle.zeros(
            (self.columns, self.columns), dtype='float32')
        self.nsamples = 0
        self.quantized = False
        self.weight_quant_method = weight_quant_method
        self.quant_bits = (1 << (quant_bits - 1)) - 1

    def forward(self, input):
        if not self.quantized:
            inp = input[0] if type(input) == tuple else input
            inp = inp.cast('float32')
            if len(inp.shape) == 2:
                inp = inp.unsqueeze(0)
            tmp = inp.shape[0]
            if type(self.layer) in [
                    nn.Linear, ColumnParallelLinear, RowParallelLinear
            ]:
                if len(inp.shape) == 3:
                    inp = inp.reshape((-1, inp.shape[-1]))
                inp = inp.t()

            self.hessian *= self.nsamples / (self.nsamples + tmp)
            self.nsamples += tmp

            inp = math.sqrt(2 / self.nsamples) * inp
            self.hessian += paddle.matmul(inp, inp.t())
            del inp
        return self.layer(input)

    def fasterquant(self,
                    blocksize=128,
                    percdamp=.01,
                    groupsize=-1,
                    actorder=True):
        print('quant', self.layer.full_name())
        W = self.layer.weight.t().cast('float32')
        weight_scale = compute_scales(W.t(), method=self.weight_quant_method)
        weight_scale /= self.quant_bits
        tick = time.time()

        H = self.hessian
        del self.hessian
        dead = paddle.where(paddle.diag(H) == 0)
        H[dead, dead] = 1
        W[:, dead] = 0
        del dead
        if actorder:
            perm = paddle.argsort(paddle.diag(H), descending=True)
            W = W.transpose((1, 0))
            W = W[perm].transpose((1, 0))
            H = H[perm].transpose((1, 0))
            H = H[perm].transpose((1, 0))

        Losses = paddle.zeros_like(W)
        Q = paddle.zeros_like(W)

        damp = percdamp * paddle.mean(paddle.diag(H))
        diag = paddle.arange(self.columns)
        H[diag, diag] += damp

        H = paddle.inverse(H)
        H = paddle.linalg.cholesky(H, upper=True)
        Hinv = H

        for i1 in range(0, self.columns, blocksize):
            i2 = min(i1 + blocksize, self.columns)
            count = i2 - i1
            W1 = W[:, i1:i2]
            Q1 = paddle.zeros_like(W1)
            Err1 = paddle.zeros_like(W1)
            Losses1 = paddle.zeros_like(W1)
            Hinv1 = Hinv[i1:i2, i1:i2]

            for i in range(count):
                w = W1[:, i]
                d = Hinv1[i, i]
                if groupsize != -1:
                    if (i1 + i) % groupsize == 0:
                        weight_scale = compute_scales(
                            W[:, (i1 + i):(i1 + i + groupsize)].t(),
                            method=self.weight_quant_method)
                        weight_scale /= self.quant_bits

                q = paddle.clip(
                    paddle.round(w / weight_scale), -self.quant_bits - 1,
                    self.quant_bits)
                q = q * weight_scale
                Q1[:, i] = q
                Losses1[:, i] = (w - q)**2 / d**2

                err1 = (w - q) / d
                W1[:, i:] -= err1.unsqueeze(1).matmul(Hinv1[i, i:].unsqueeze(0))
                Err1[:, i] = err1
                del w, d, q, err1
                paddle.device.cuda.empty_cache()

            Q[:, i1:i2] = Q1
            Losses[:, i1:i2] = Losses1 / 2
            del Q1, Losses1
            if Hinv[i1:i2, i2:].shape[1] != 0:
                W[:, i2:] -= Err1.matmul(Hinv[i1:i2, i2:])
            del Err1, W1, Hinv1
            paddle.device.cuda.empty_cache()

        print('time %.2f' % (time.time() - tick))
        print('error', paddle.sum(Losses).item())

        if actorder:
            invperm = paddle.argsort(perm)
            Q = Q.transpose((1, 0))
            Q = Q[invperm].transpose((1, 0))
            del invperm, perm

        param = self.layer.weight
        Q = Q.t().cast(self.layer.weight.dtype)
        paddle.assign(Q, output=param)

        self.quantized = True
        del H, Q, Hinv, W, Losses
        paddle.device.cuda.empty_cache()