run.py 5.8 KB
Newer Older
Z
zhouzj 已提交
1 2 3 4 5
import os
import argparse
import random
import paddle
import numpy as np
Z
zhouzj 已提交
6
from paddleseg.cvlibs import Config
Z
zhouzj 已提交
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
from paddleseg.utils import worker_init_fn
from paddleslim.auto_compression.config_helpers import load_config
from paddleslim.auto_compression import AutoCompression
from paddleseg.core.infer import reverse_transform
from paddleseg.utils import metrics


def parse_args():
    parser = argparse.ArgumentParser(description='Model training')
    parser.add_argument(
        '--model_dir',
        type=str,
        default=None,
        help="inference model directory.")
    parser.add_argument(
        '--model_filename',
        type=str,
        default=None,
        help="inference model filename.")
    parser.add_argument(
        '--params_filename',
        type=str,
        default=None,
        help="inference params filename.")
    parser.add_argument(
        '--save_dir',
        type=str,
        default=None,
        help="directory to save compressed model.")
    parser.add_argument(
        '--config_path',
        type=str,
        default=None,
        help="path of compression strategy config.")
Z
zhouzj 已提交
41 42 43 44 45
    parser.add_argument(
        '--deploy_hardware',
        type=str,
        default=None,
        help="The hardware you want to deploy.")
Z
zhouzj 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
    return parser.parse_args()


def eval_function(exe, compiled_test_program, test_feed_names, test_fetch_list):

    nranks = paddle.distributed.ParallelEnv().local_rank

    batch_sampler = paddle.io.DistributedBatchSampler(
        eval_dataset, batch_size=1, shuffle=False, drop_last=False)
    loader = paddle.io.DataLoader(
        eval_dataset,
        batch_sampler=batch_sampler,
        num_workers=1,
        return_list=True, )

    total_iters = len(loader)
    intersect_area_all = 0
    pred_area_all = 0
    label_area_all = 0

    print("Start evaluating (total_samples: {}, total_iters: {})...".format(
        len(eval_dataset), total_iters))

    for iter, (image, label) in enumerate(loader):
        paddle.enable_static()

        label = np.array(label).astype('int64')
        ori_shape = np.array(label).shape[-2:]

        image = np.array(image)
        logits = exe.run(compiled_test_program,
                         feed={test_feed_names[0]: image},
                         fetch_list=test_fetch_list,
                         return_numpy=True)

        paddle.disable_static()
        logit = logits[0]

        logit = reverse_transform(
            paddle.to_tensor(logit),
            ori_shape,
            eval_dataset.transforms.transforms,
            mode='bilinear')

        pred = paddle.argmax(
            paddle.to_tensor(logit), axis=1, keepdim=True, dtype='int32')

        intersect_area, pred_area, label_area = metrics.calculate_area(
            pred,
            paddle.to_tensor(label),
            eval_dataset.num_classes,
            ignore_index=eval_dataset.ignore_index)

        if nranks > 1:
            intersect_area_list = []
            pred_area_list = []
            label_area_list = []
            paddle.distributed.all_gather(intersect_area_list, intersect_area)
            paddle.distributed.all_gather(pred_area_list, pred_area)
            paddle.distributed.all_gather(label_area_list, label_area)

            # Some image has been evaluated and should be eliminated in last iter
            if (iter + 1) * nranks > len(eval_dataset):
                valid = len(eval_dataset) - iter * nranks
                intersect_area_list = intersect_area_list[:valid]
                pred_area_list = pred_area_list[:valid]
                label_area_list = label_area_list[:valid]

            for i in range(len(intersect_area_list)):
                intersect_area_all = intersect_area_all + intersect_area_list[i]
                pred_area_all = pred_area_all + pred_area_list[i]
                label_area_all = label_area_all + label_area_list[i]
        else:
            intersect_area_all = intersect_area_all + intersect_area
            pred_area_all = pred_area_all + pred_area
            label_area_all = label_area_all + label_area

    class_iou, miou = metrics.mean_iou(intersect_area_all, pred_area_all,
                                       label_area_all)
    class_acc, acc = metrics.accuracy(intersect_area_all, pred_area_all)
    kappa = metrics.kappa(intersect_area_all, pred_area_all, label_area_all)
    class_dice, mdice = metrics.dice(intersect_area_all, pred_area_all,
                                     label_area_all)

    infor = "[EVAL] #Images: {} mIoU: {:.4f} Acc: {:.4f} Kappa: {:.4f} Dice: {:.4f}".format(
        len(eval_dataset), miou, acc, kappa, mdice)
    print(infor)

    paddle.enable_static()
    return miou


def reader_wrapper(reader):
    def gen():
        for i, data in enumerate(reader()):
            imgs = np.array(data[0])
            yield {"x": imgs}

    return gen


if __name__ == '__main__':

    args = parse_args()

Z
zhouzj 已提交
151 152
    compress_config, train_config = load_config(args.config_path)
    cfg = Config(compress_config['reader_config'])
Z
zhouzj 已提交
153

Z
zhouzj 已提交
154 155
    train_dataset = cfg.train_dataset
    eval_dataset = cfg.val_dataset
Z
zhouzj 已提交
156
    batch_sampler = paddle.io.DistributedBatchSampler(
Z
zhouzj 已提交
157
        train_dataset, batch_size=cfg.batch_size, shuffle=True, drop_last=True)
Z
zhouzj 已提交
158 159 160 161 162
    train_loader = paddle.io.DataLoader(
        train_dataset,
        batch_sampler=batch_sampler,
        num_workers=2,
        return_list=True,
Z
zhouzj 已提交
163
        worker_init_fn=worker_init_fn)
Z
zhouzj 已提交
164 165 166 167 168 169 170 171 172 173 174
    train_dataloader = reader_wrapper(train_loader)

    # set auto_compression
    ac = AutoCompression(
        model_dir=args.model_dir,
        model_filename=args.model_filename,
        params_filename=args.param_filename,
        save_dir=args.save_dir,
        strategy_config=compress_config,
        train_config=train_config,
        train_dataloader=train_dataloader,
Z
zhouzj 已提交
175 176
        eval_callback=eval_function,
        deploy_hardware=args.deploy_hardware)
Z
zhouzj 已提交
177 178

    ac.compress()