hist.py 3.2 KB
Newer Older
R
RachelXu7 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import numpy as np

from .base_hist import BaseHistObserver
from paddle.quantization.factory import ObserverFactory


class HistObserver(ObserverFactory):
    r"""
    It collects maximum absolute values of target tensor.
    Args:
        bit_length(int, optional): Number of bits to represent an quantized integer in binary.
        dtype(str, optional): The data type of input tensor.
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
    Examples:
       .. code-block:: python
            from paddle.quantization import QuantConfig
            from paddle.quantization.quanters import FakeQuanterWithAbsMaxObserver
            quanter = FakeQuanterWithAbsMaxObserver(moving_rate=0.99)
            q_config = QuantConfig(activation=quanter, weight=quanter)
    """

    def __init__(self,
                 quant_bits=8,
                 bins_count=2048,
                 upsample_bins_count=64,
                 percent=0.999,
                 sign=True,
                 symmetric=True):
        super(HistObserver, self).__init__(
            quant_bits=quant_bits,
            bins_count=bins_count,
            upsample_bins_count=upsample_bins_count,
            percent=percent,
            sign=sign,
            symmetric=symmetric)

    def _get_class(self):
        return PercentHistObserverLayer


class PercentHistObserverLayer(BaseHistObserver):
    """
    Per-tensor abs max quantizer.
    """

    def __init__(self,
                 layer,
                 quant_bits=8,
                 bins_count=2048,
                 upsample_bins_count=64,
                 percent=0.999,
                 sign=True,
                 symmetric=True):
        super(PercentHistObserverLayer, self).__init__(
            quant_bits=quant_bits,
            bins_count=bins_count,
            upsample_bins_count=upsample_bins_count,
            sign=sign,
            symmetric=symmetric)

        self._percent = percent

    def _cal_min_max_by_percent(self):
        hist = self._hist / np.sum(self._hist, dtype=np.float64)
        cumsumed_hist = np.cumsum(hist)
        max_idx = np.argwhere(cumsumed_hist >= self._percent)[0]
        min_idx = np.argwhere(cumsumed_hist >= (1 - self._percent))[0]
        bin_width = (self._hist_max - self._hist_min) / hist.shape[0]
        _max = self._hist_min + float((max_idx - 0.5) * bin_width)
        _min = self._hist_min + float((min_idx - 0.5) * bin_width)
        return _min, _max

    def cal_min_max(self):
        return self._cal_min_max_by_percent()