avg-checkpoint.py 3.2 KB
Newer Older
R
RachelXu7 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import paddle
from .uniform import UniformObserver
from paddle.quantization.factory import ObserverFactory


class AVGObserver(ObserverFactory):
    r"""
    It collects maximum absolute values of target tensor.
    Args:
        bit_length(int, optional): Number of bits to represent an quantized integer in binary.
        dtype(str, optional): The data type of input tensor.
        name (str, optional): This parameter is used by developers to print debugging information. \
            For details, please refer to :ref:`api_guide_Name`. Default is None.
    Examples:
       .. code-block:: python
            from paddle.quantization import QuantConfig
            from paddle.quantization.quanters import FakeQuanterWithAbsMaxObserver
            quanter = FakeQuanterWithAbsMaxObserver(moving_rate=0.99)
            q_config = QuantConfig(activation=quanter, weight=quanter)
    """

    def __init__(self, quant_bits=8):
        super(AVGObserver, self).__init__(quant_bits=quant_bits)

    def _get_class(self):
        return AVGObserverLayer


class AVGObserverLayer(UniformObserver):
    def __init__(
            self,
            layer,
            quant_bits=8, ):
        super(AVGObserverLayer, self).__init__(quant_bits=quant_bits)
        self._quant_bits = quant_bits
        self._avg_list = []

    def forward(self, inputs):
        """ Calculate forward pass.
        """
        self._scale = None
        self._zero_point = None
        self._min = None
        self._max = None
        self._avg_min, self._avg_max = self.cal_min_max(inputs)
        self._avg_list.append(self._avg_max)

        return inputs

    def cal_min_max(self, inputs):
        abs_avg_value = paddle.abs(inputs.reshape((inputs.shape[0], -1)))
        abs_avg_value = float(paddle.mean(paddle.max(abs_avg_value, axis=(1))))
        return 0, abs_avg_value

    def cal_thresholds(self):
        """ Compute thresholds for MAX function.
        """
        self._min, self._max = self._avg_min, paddle.mean(
            paddle.to_tensor(self._avg_list))
        self._scale, self._zero_point = self.cal_scales_zero_points()

    def bit_length(self):
        """ Return the bit length of quantized data.
        """
        return self._quant_bits

    def quant_axis(self):
        """ Return quantization axis.
        """
        return -1

    def scales(self):
        """ Return output scales.
        """
        if self._scale is None:
            self.cal_thresholds()
        return self._scale

    def zero_points(self):
        """ Return output zero points.
        """
        if self._zero_point is None:
            self.cal_thresholds()
        return self._zero_point