model_zoo_en.md 25.4 KB
Newer Older
W
whs 已提交
1 2
# Model Zoo

B
Bai Yifan 已提交
3
## 1. Image Classification
W
whs 已提交
4

B
Bai Yifan 已提交
5
Dataset:ImageNet1000
W
whs 已提交
6

B
Bai Yifan 已提交
7
### 1.1 Quantization
W
whs 已提交
8

B
Bai Yifan 已提交
9
| Model | Method | Top-1/Top-5 Acc | Model Size(MB) | TensorRT latency(V100, ms) | Download |
W
whs 已提交
10
|:--:|:---:|:--:|:--:|:--:|:--:|
B
Bai Yifan 已提交
11 12 13 14 15 16 17 18
|MobileNetV1|-|70.99%/89.68%| 17 | -| [model](http://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar) |
|MobileNetV1|quant_post|70.18%/89.25% (-0.81%/-0.43%)| 4.4 | - | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV1_quant_post.tar) |
|MobileNetV1|quant_aware|70.60%/89.57% (-0.39%/-0.11%)| 4.4 | -| [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV1_quant_aware.tar) |
| MobileNetV2 | - |72.15%/90.65%| 15 | - | [model](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar) |
| MobileNetV2 | quant_post | 71.15%/90.11% (-1%/-0.54%)| 4.0   | - | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV2_quant_post.tar) |
| MobileNetV2 | quant_aware |72.05%/90.63% (-0.1%/-0.02%)| 4.0 | - | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV2_quant_aware.tar) |
|ResNet50|-|76.50%/93.00%| 99 | 2.71 | [model](http://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.tar) |
|ResNet50|quant_post|76.33%/93.02% (-0.17%/+0.02%)| 25.1| 1.19 | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/ResNet50_quant_post.tar) |
C
ceci3 已提交
19
|ResNet50|quant_aware|    76.48%/93.11% (-0.02%/+0.11%)| 25.1 | 1.17 | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/ResNet50_quant_awre.tar) |
B
Bai Yifan 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

PaddleLite latency(ms)

| Device    | Model    | Method      | armv7 Thread 1 | armv7 Thread 2 | armv7 Thread 4 | armv8 Thread 1 | armv8 Thread 2 | armv8 Thread 4 |
| ------- | ----------- | ------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- |
| Qualcomm 835 | MobileNetV1 | FP32 baseline | 96.1942        | 53.2058        | 32.4468        | 88.4955        | 47.95          | 27.5189        |
| Qualcomm 835 | MobileNetV1 | quant_aware   | 60.8186        | 32.1931        | 16.4275        | 56.4311        | 29.5446        | 15.1053        |
| Qualcomm 835 | MobileNetV1 | quant_post    | 60.5615        | 32.4016        | 16.6596        | 56.5266        | 29.7178        | 15.1459        |
| Qualcomm 835 | MobileNetV2 | FP32 baseline | 65.715         | 38.1346        | 25.155         | 61.3593        | 36.2038        | 22.849         |
| Qualcomm 835 | MobileNetV2 | quant_aware   | 48.3655        | 30.2021        | 21.9303        | 46.1487        | 27.3146        | 18.3053        |
| Qualcomm 835 | MobileNetV2 | quant_post    | 48.3495        | 30.3069        | 22.1506        | 45.8715        | 27.4105        | 18.2223        |
| Qualcomm 835 | ResNet50    | FP32 baseline | 526.811        | 319.6486       | 205.8345       | 506.1138       | 335.1584       | 214.8936       |
| Qualcomm 835 | ResNet50    | quant_aware   | 475.4538       | 256.8672       | 139.699        | 461.7344       | 247.9506       | 145.9847       |
| Qualcomm 835 | ResNet50    | quant_post    | 476.0507       | 256.5963       | 139.7266       | 461.9176       | 248.3795       | 149.353        |
| Qualcomm 855 | MobileNetV1 | FP32 baseline | 33.5086        | 19.5773        | 11.7534        | 31.3474        | 18.5382        | 10.0811        |
| Qualcomm 855 | MobileNetV1 | quant_aware   | 36.7067        | 21.628         | 11.0372        | 14.0238        | 8.199          | 4.2588         |
| Qualcomm 855 | MobileNetV1 | quant_post    | 37.0498        | 21.7081        | 11.0779        | 14.0947        | 8.1926         | 4.2934         |
| Qualcomm 855 | MobileNetV2 | FP32 baseline | 25.0396        | 15.2862        | 9.6609         | 22.909         | 14.1797        | 8.8325         |
| Qualcomm 855 | MobileNetV2 | quant_aware   | 28.1583        | 18.3317        | 11.8103        | 16.9158        | 11.1606        | 7.4148         |
| Qualcomm 855 | MobileNetV2 | quant_post    | 28.1631        | 18.3917        | 11.8333        | 16.9399        | 11.1772        | 7.4176         |
| Qualcomm 855 | ResNet50    | FP32 baseline | 185.3705       | 113.0825       | 87.0741        | 177.7367       | 110.0433       | 74.4114        |
| Qualcomm 855 | ResNet50    | quant_aware   | 327.6883       | 202.4536       | 106.243        | 243.5621       | 150.0542       | 78.4205        |
| Qualcomm 855 | ResNet50    | quant_post    | 328.2683       | 201.9937       | 106.744        | 242.6397       | 150.0338       | 79.8659        |
| Kirin 970 | MobileNetV1 | FP32 baseline | 101.2455       | 56.4053        | 35.6484        | 94.8985        | 51.7251        | 31.9511        |
| Kirin 970 | MobileNetV1 | quant_aware   | 62.5012        | 32.1863        | 16.6018        | 57.7477        | 29.2116        | 15.0703        |
| Kirin 970 | MobileNetV1 | quant_post    | 62.4412        | 32.2585        | 16.6215        | 57.825         | 29.2573        | 15.1206        |
| Kirin 970 | MobileNetV2 | FP32 baseline | 70.4176        | 42.0795        | 25.1939        | 68.9597        | 39.2145        | 22.6617        |
| Kirin 970 | MobileNetV2 | quant_aware   | 52.9961        | 31.5323        | 22.1447        | 49.4858        | 28.0856        | 18.7287        |
| Kirin 970 | MobileNetV2 | quant_post    | 53.0961        | 31.7987        | 21.8334        | 49.383         | 28.2358        | 18.3642        |
| Kirin 970 | ResNet50    | FP32 baseline | 586.8943       | 344.0858       | 228.2293       | 573.3344       | 351.4332       | 225.8006       |
| Kirin 970 | ResNet50    | quant_aware   | 488.361        | 260.1697       | 142.416        | 479.5668       | 249.8485       | 138.1742       |
| Kirin 970 | ResNet50    | quant_post    | 489.6188       | 258.3279       | 142.6063       | 480.0064       | 249.5339       | 138.5284       |





### 1.2 Pruning


| Model | Method | Top-1/Top-5 Acc | Model Size(MB) | GFLOPs | Download |
|:--:|:---:|:--:|:--:|:--:|:--:|
| MobileNetV1 |    Baseline    |         70.99%/89.68%         |       17       |  1.11  | [model](http://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar) |
| MobileNetV1 |  uniform -50%  | 69.4%/88.66% (-1.59%/-1.02%)  |       9        |  0.56  | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV1_uniform-50.tar) |
| MobileNetV1 | sensitive -30% |  70.4%/89.3% (-0.59%/-0.38%)  |       12       |  0.74  | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV1_sensitive-30.tar) |
| MobileNetV1 | sensitive -50% | 69.8% / 88.9% (-1.19%/-0.78%) |       9        |  0.56  | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV1_sensitive-50.tar) |
| MobileNetV2 |       -        |         72.15%/90.65%         |       15       |  0.59  | [model](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar) |
| MobileNetV2 |  uniform -50%  | 65.79%/86.11% (-6.35%/-4.47%) |       11       | 0.296  | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV2_uniform-50.tar) |
|  ResNet34   |       -        |         72.15%/90.65%         |       84       |  7.36  | [model](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_pretrained.tar) |
|  ResNet34   |  uniform -50%  | 70.99%/89.95% (-1.36%/-0.87%) |       41       |  3.67  | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/ResNet34_uniform-50.tar) |
|  ResNet34   |  auto -55.05%  | 70.24%/89.63% (-2.04%/-1.06%) |       33       |  3.31  | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/ResNet34_auto-55.tar) |
W
whs 已提交
71 72 73 74




B
Bai Yifan 已提交
75
### 1.3 Distillation
W
whs 已提交
76

B
Bai Yifan 已提交
77
| Model | Method | Top-1/Top-5 Acc | Model Size(MB) | Download |
W
whs 已提交
78
|:--:|:---:|:--:|:--:|:--:|
B
Bai Yifan 已提交
79 80 81 82 83 84 85 86
| MobileNetV1 |                     student                     |  70.99%/89.68%  |       17       | [model](http://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_pretrained.tar) |
|ResNet50_vd|teacher|79.12%/94.44%| 99 | [model](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar) |
|MobileNetV1|ResNet50_vd<sup>[1](#trans1)</sup> distill|72.77%/90.68% (+1.78%/+1.00%)| 17 | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV1_distilled.tar) |
| MobileNetV2 |                     student                     |  72.15%/90.65%  |       15       | [model](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar) |
| MobileNetV2 |            ResNet50_vd distill             |  74.28%/91.53% (+2.13%/+0.88%)  |       15       | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/MobileNetV2_distilled.tar) |
|  ResNet50   |                     student                     |  76.50%/93.00%  |       99       | [model](http://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_pretrained.tar) |
|ResNet101|teacher|77.56%/93.64%| 173 | [model](http://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_pretrained.tar) |
|  ResNet50   |             ResNet101 distill              |  77.29%/93.65% (+0.79%/+0.65%)  |       99       | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/ResNet50_distilled.tar) |
W
whs 已提交
87 88 89

!!! note "Note"

B
Bai Yifan 已提交
90 91
    <a name="trans1">[1]</a>:The `_vd` suffix indicates that the pre-trained model uses Mixup. Please refer to the detailed introduction: [mixup: Beyond Empirical Risk Minimization](https://arxiv.org/abs/1710.09412)

W
whs 已提交
92

C
ceci3 已提交
93 94 95 96 97 98 99
### 1.4 NAS

| Model | Method | Top-1/Top-5 Acc | Volume(MB) | GFLOPs | Download |
|:--:|:---:|:--:|:--:|:--:|:--:|
| MobileNetV2 |       -        |            72.15%/90.65%           |     15      |  0.59  | [model](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_pretrained.tar) |
| MobileNetV2 |     SANAS      |  71.518%/90.208% (-0.632%/-0.442%) |     14      | 0.295  | [model](https://paddlemodels.cdn.bcebos.com/PaddleSlim/MobileNetV2_sanas.tar) |

B
Bai Yifan 已提交
100
## 2. Object Detection
W
whs 已提交
101

B
Bai Yifan 已提交
102 103 104
### 2.1 Quantization

Dataset: COCO 2017
W
whs 已提交
105

B
Bai Yifan 已提交
106 107 108
|              Model              |  Method  | Dataset | Image/GPU | Input 608 Box AP | Input 416 Box AP | Input 320 Box AP | Model Size(MB) | TensorRT latency(V100, ms) |  Download  |
| :----------------------------: | :---------: | :----: | :-------: | :------------: | :------------: | :------------: | :------------: | :----------: |:----------: |
|      MobileNet-V1-YOLOv3       |      -      |  COCO  |     8     |      29.3      |      29.3      |      27.1      |       95       |  - | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar) |
C
ceci3 已提交
109 110
|      MobileNet-V1-YOLOv3       | quant_post  |  COCO  |     8     |     27.9 (-1.4)|    28.0 (-1.3)      |    26.0 (-1.0) |       25       | -  | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_coco_quant_post.tar) |
|      MobileNet-V1-YOLOv3       | quant_aware |  COCO  |     8     |     28.1 (-1.2)|  28.2 (-1.1)      |    25.8 (-1.2) |       26.3     | -  | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenet_coco_quant_aware.tar) |
B
Bai Yifan 已提交
111 112 113 114 115
|      R34-YOLOv3                |      -      |  COCO  |     8     |      36.2      |      34.3      |      31.4      |       162       |  - | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34.tar) |
|      R34-YOLOv3                | quant_post  |  COCO  |     8     | 35.7 (-0.5)    |      -         |      -         |       42.7      |  - | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r34_coco_quant_post.tar) |
|      R34-YOLOv3                | quant_aware |  COCO  |     8     |  35.2 (-1.0)   | 33.3 (-1.0)    |     30.3 (-1.1)|       44       |  - | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r34_coco_quant_aware.tar) |
| R50-dcn-YOLOv3 obj365_pretrain |      -      |  COCO  |     8     |      41.4      |       -      |       -       |       177       | 18.56  |[model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn_obj365_pretrained_coco.tar) |
| R50-dcn-YOLOv3 obj365_pretrain | quant_aware |  COCO  |     8     |   40.6 (-0.8)  |       37.5   |       34.1    |       66       |  14.64 | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_obj365_pretrained_coco_quant_aware.tar) |
W
whs 已提交
116 117 118



B
Bai Yifan 已提交
119
Dataset:WIDER-FACE
W
whs 已提交
120 121 122



B
Bai Yifan 已提交
123 124 125 126 127 128 129 130 131 132 133
|     Model      |   Method    | Image/GPU | Input Size |        Easy/Medium/Hard         | Model Size(MB) |                           Download                           |
| :------------: | :---------: | :-------: | :--------: | :-----------------------------: | :--------------: | :----------------------------------------------------------: |
|   BlazeFace    |      -      |     8     |    640     |         91.5/89.2/79.7          |       815        | [model](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_original.tar) |
|   BlazeFace    | quant_post  |     8     |    640     | 87.8/85.1/74.9 (-3.7/-4.1/-4.8) |       228        | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_origin_quant_post.tar) |
|   BlazeFace    | quant_aware |     8     |    640     | 90.5/87.9/77.6 (-1.0/-1.3/-2.1) |       228        | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_origin_quant_aware.tar) |
| BlazeFace-Lite |      -      |     8     |    640     |         90.9/88.5/78.1          |       711        | [model](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_lite.tar) |
| BlazeFace-Lite | quant_post  |     8     |    640     | 89.4/86.7/75.7 (-1.5/-1.8/-2.4) |       211        | [model]((https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_lite_quant_post.tar)) |
| BlazeFace-Lite | quant_aware |     8     |    640     | 89.7/87.3/77.0 (-1.2/-1.2/-1.1) |       211        | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_lite_quant_aware.tar) |
| BlazeFace-NAS  |      -      |     8     |    640     |         83.7/80.7/65.8          |       244        | [model](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_nas.tar) |
| BlazeFace-NAS  | quant_post  |     8     |    640     | 81.6/78.3/63.6 (-2.1/-2.4/-2.2) |        71        | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_nas_quant_post.tar) |
| BlazeFace-NAS  | quant_aware |     8     |    640     | 83.1/79.7/64.2 (-0.6/-1.0/-1.6) |        71        | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/blazeface_nas_quant_aware.tar) |
W
whs 已提交
134

B
Bai Yifan 已提交
135
### 2.2 Pruning
W
whs 已提交
136

B
Bai Yifan 已提交
137
Dataset:Pasacl VOC & COCO 2017
W
whs 已提交
138

B
Bai Yifan 已提交
139 140 141 142 143 144 145 146 147 148 149 150
|             Model              |      Method       |  Dataset   | Image/GPU | Input 608 Box AP | Input 416 Box AP | Input 320 Box AP | Model Size(MB) | GFLOPs (608*608) |                           Download                           |
| :----------------------------: | :---------------: | :--------: | :-------: | :--------------: | :--------------: | :--------------: | :------------: | :--------------: | :----------------------------------------------------------: |
|      MobileNet-V1-YOLOv3       |     Baseline      | Pascal VOC |     8     |       76.2       |       76.7       |       75.3       |       94       |      40.49       | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_voc.tar) |
|      MobileNet-V1-YOLOv3       | sensitive -52.88% | Pascal VOC |     8     |   77.6 (+1.4)    |    77.7 (1.0)    |   75.5 (+0.2)    |       31       |      19.08       | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenet_v1_voc_prune.tar) |
|      MobileNet-V1-YOLOv3       |         -         |    COCO    |     8     |       29.3       |       29.3       |       27.0       |       95       |      41.35       | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar) |
|      MobileNet-V1-YOLOv3       | sensitive -51.77% |    COCO    |     8     |   26.0 (-3.3)    |   25.1 (-4.2)    |   22.6 (-4.4)    |       32       |      19.94       | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenet_v1_prune.tar) |
|         R50-dcn-YOLOv3         |         -         |    COCO    |     8     |       39.1       |        -         |        -         |      177       |      89.60       | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn.tar) |
|         R50-dcn-YOLOv3         | sensitive -9.37%  |    COCO    |     8     |   39.3 (+0.2)    |        -         |        -         |      150       |      81.20       | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_prune.tar) |
|         R50-dcn-YOLOv3         | sensitive -24.68% |    COCO    |     8     |   37.3 (-1.8)    |        -         |        -         |      113       |      67.48       | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_prune578.tar) |
| R50-dcn-YOLOv3 obj365_pretrain |         -         |    COCO    |     8     |       41.4       |        -         |        -         |      177       |      89.60       | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn_obj365_pretrained_coco.tar) |
| R50-dcn-YOLOv3 obj365_pretrain | sensitive -9.37%  |    COCO    |     8     |   40.5 (-0.9)    |        -         |        -         |      150       |      81.20       | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_obj365_pretrained_coco_prune.tar) |
| R50-dcn-YOLOv3 obj365_pretrain | sensitive -24.68% |    COCO    |     8     |   37.8 (-3.3)    |        -         |        -         |      113       |      67.48       | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_r50vd_dcn_obj365_pretrained_coco_prune578.tar) |
W
whs 已提交
151

B
Bai Yifan 已提交
152
### 2.3 Distillation
W
whs 已提交
153

B
Bai Yifan 已提交
154
Dataset:Pasacl VOC & COCO 2017
W
whs 已提交
155 156


B
Bai Yifan 已提交
157 158 159 160 161 162 163 164
|        Model        |         Method          |  Dataset   | Image/GPU | Input 608 Box AP | Input 416 Box AP | Input 320 Box AP | Model Size(MB) |                           Download                           |
| :-----------------: | :---------------------: | :--------: | :-------: | :--------------: | :--------------: | :--------------: | :--------------: | :----------------------------------------------------------: |
| MobileNet-V1-YOLOv3 |            -            | Pascal VOC |     8     |       76.2       |       76.7       |       75.3       |        94        | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_voc.tar) |
|   ResNet34-YOLOv3   |            -            | Pascal VOC |     8     |       82.6       |       81.9       |       80.1       |       162        | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34_voc.tar) |
| MobileNet-V1-YOLOv3 | ResNet34-YOLOv3 distill | Pascal VOC |     8     |   79.0 (+2.8)    |   78.2 (+1.5)    |   75.5 (+0.2)    |        94        | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_voc_distilled.tar) |
| MobileNet-V1-YOLOv3 |            -            |    COCO    |     8     |       29.3       |       29.3       |       27.0       |        95        | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar) |
|   ResNet34-YOLOv3   |            -            |    COCO    |     8     |       36.2       |       34.3       |       31.4       |       163        | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34.tar) |
| MobileNet-V1-YOLOv3 | ResNet34-YOLOv3 distill |    COCO    |     8     |   31.4 (+2.1)    |   30.0 (+0.7)    |   27.1 (+0.1)    |        95        | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/yolov3_mobilenetv1_coco_distilled.tar) |
W
whs 已提交
165 166


C
ceci3 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179 180
### 2.4 NAS

Dataset: WIDER-FACE

|      Model      |  Method   | Image/GPU | Input size |        Easy/Medium/Hard         |  volume(KB) |    latency(ms)|                         Download                             |
| :------------: | :---------: | :-------: | :------: | :-----------------------------: | :------------: | :------------: | :----------------------------------------------------------: |
|   BlazeFace    |      -      |     8     |   640    |         91.5/89.2/79.7          |      815       |       71.862     | [model](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_original.tar) |
| BlazeFace-NAS  |      -      |     8     |   640    |         83.7/80.7/65.8          |      244       |       21.117     |[model](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_nas.tar) |
| BlazeFace-NAS1 |    SANAS    |     8     |   640    |         87.0/83.7/68.5          |      389       |       22.558     | [model](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_nas2.tar) |

!!! note "Note"

    <a name="trans1">[1]</a>: latency is based on latency_855.txt, the file is test on 855 by PaddleLite。

W
whs 已提交
181

C
ceci3 已提交
182
## 3. Image Segmentation
B
Bai Yifan 已提交
183
Dataset:Cityscapes
W
whs 已提交
184

B
Bai Yifan 已提交
185
### 3.1 Quantization
W
whs 已提交
186

B
Bai Yifan 已提交
187 188 189 190 191 192 193 194
|         Model          |   Method    |     mIoU      | Model Size(MB) |                           Download                           |
| :--------------------: | :---------: | :-----------: | :--------------: | :----------------------------------------------------------: |
| DeepLabv3+/MobileNetv1 |      -      |     63.26     |       6.6        | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/deeplabv3_mobilenetv1.tar ) |
| DeepLabv3+/MobileNetv1 | quant_post  | 58.63 (-4.63) |       1.8        | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/deeplabv3_mobilenetv1_2049x1025_quant_post.tar) |
| DeepLabv3+/MobileNetv1 | quant_aware | 62.03 (-1.23) |       1.8        | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/deeplabv3_mobilenetv1_2049x1025_quant_aware.tar) |
| DeepLabv3+/MobileNetv2 |      -      |     69.81     |       7.4        | [model](https://paddleseg.bj.bcebos.com/models/mobilenet_cityscapes.tgz) |
| DeepLabv3+/MobileNetv2 | quant_post  | 67.59 (-2.22) |       2.1        | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/deeplabv3_mobilenetv2_2049x1025_quant_post.tar) |
| DeepLabv3+/MobileNetv2 | quant_aware | 68.33 (-1.48) |       2.1        | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/deeplabv3_mobilenetv2_2049x1025_quant_aware.tar) |
W
whs 已提交
195

B
Bai Yifan 已提交
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
Image segmentation model PaddleLite latency (ms), input size 769x769

| Device       | Model                  | Method        | armv7 Thread 1 | armv7 Thread 2 | armv7 Thread 4 | armv8 Thread 1 | armv8 Thread 2 | armv8 Thread 4 |
| ------------ | ---------------------- | ------------- | -------------- | -------------- | -------------- | -------------- | -------------- | -------------- |
| Qualcomm 835 | Deeplabv3- MobileNetV1 | FP32 baseline | 1227.9894      | 734.1922       | 527.9592       | 1109.96        | 699.3818       | 479.0818       |
| Qualcomm 835 | Deeplabv3- MobileNetV1 | quant_aware   | 848.6544       | 512.785        | 382.9915       | 752.3573       | 455.0901       | 307.8808       |
| Qualcomm 835 | Deeplabv3- MobileNetV1 | quant_post    | 840.2323       | 510.103        | 371.9315       | 748.9401       | 452.1745       | 309.2084       |
| Qualcomm 835 | Deeplabv3-MobileNetV2  | FP32 baseline | 1282.8126      | 793.2064       | 653.6538       | 1193.9908      | 737.1827       | 593.4522       |
| Qualcomm 835 | Deeplabv3-MobileNetV2  | quant_aware   | 976.0495       | 659.0541       | 513.4279       | 892.1468       | 582.9847       | 484.7512       |
| Qualcomm 835 | Deeplabv3-MobileNetV2  | quant_post    | 981.44         | 658.4969       | 538.6166       | 885.3273       | 586.1284       | 484.0018       |
| Qualcomm 855 | Deeplabv3- MobileNetV1 | FP32 baseline | 568.8748       | 339.8578       | 278.6316       | 420.6031       | 281.3197       | 217.5222       |
| Qualcomm 855 | Deeplabv3- MobileNetV1 | quant_aware   | 608.7578       | 347.2087       | 260.653        | 241.2394       | 177.3456       | 143.9178       |
| Qualcomm 855 | Deeplabv3- MobileNetV1 | quant_post    | 609.0142       | 347.3784       | 259.9825       | 239.4103       | 180.1894       | 139.9178       |
| Qualcomm 855 | Deeplabv3-MobileNetV2  | FP32 baseline | 639.4425       | 390.1851       | 322.7014       | 477.7667       | 339.7411       | 262.2847       |
| Qualcomm 855 | Deeplabv3-MobileNetV2  | quant_aware   | 703.7275       | 497.689        | 417.1296       | 394.3586       | 300.2503       | 239.9204       |
| Qualcomm 855 | Deeplabv3-MobileNetV2  | quant_post    | 705.7589       | 474.4076       | 427.2951       | 394.8352       | 297.4035       | 264.6724       |
| Kirin 970    | Deeplabv3- MobileNetV1 | FP32 baseline | 1682.1792      | 1437.9774      | 1181.0246      | 1261.6739      | 1068.6537      | 690.8225       |
| Kirin 970    | Deeplabv3- MobileNetV1 | quant_aware   | 1062.3394      | 1248.1014      | 878.3157       | 774.6356       | 710.6277       | 528.5376       |
| Kirin 970    | Deeplabv3- MobileNetV1 | quant_post    | 1109.1917      | 1339.6218      | 866.3587       | 771.5164       | 716.5255       | 500.6497       |
| Kirin 970    | Deeplabv3-MobileNetV2  | FP32 baseline | 1771.1301      | 1746.0569      | 1222.4805      | 1448.9739      | 1192.4491      | 760.606        |
| Kirin 970    | Deeplabv3-MobileNetV2  | quant_aware   | 1320.2905      | 921.4522       | 676.0732       | 1145.8801      | 821.5685       | 590.1713       |
| Kirin 970    | Deeplabv3-MobileNetV2  | quant_post    | 1320.386       | 918.5328       | 672.2481       | 1020.753       | 820.094        | 591.4114       |
W
whs 已提交
218 219 220



B
Bai Yifan 已提交
221 222 223 224 225 226 227 228 229


### 3.2 Pruning

|   Model   |      Method       |     mIoU      | Model Size(MB) | GFLOPs |                           Download                           |
| :-------: | :---------------: | :-----------: | :--------------: | :----: | :----------------------------------------------------------: |
| fast-scnn |     baseline      |     69.64     |        11        | 14.41  | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/fast_scnn_cityscape.tar) |
| fast-scnn | uniform  -17.07%  | 69.58 (-0.06) |       8.5        | 11.95  | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/fast_scnn_cityscape_uniform-17.tar) |
| fast-scnn | sensitive -47.60% | 66.68 (-2.96) |       5.7        |  7.55  | [model](https://paddlemodels.bj.bcebos.com/PaddleSlim/fast_scnn_cityscape_sensitive-47.tar) |