eval.py 3.6 KB
Newer Older
C
ceci3 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
import os
import sys
sys.path[0] = os.path.join(
    os.path.dirname("__file__"), os.path.pardir, os.path.pardir)
import argparse
import functools
from functools import partial

import numpy as np
import paddle
import paddle.nn as nn
from paddle.io import Dataset, BatchSampler, DataLoader
import imagenet_reader as reader
from paddleslim.auto_compression.config_helpers import load_config as load_slim_config


def argsparser():
    parser = argparse.ArgumentParser(description=__doc__)
    parser.add_argument(
        '--config_path',
        type=str,
        default=None,
        help="path of compression strategy config.",
        required=True)


def eval_reader(data_dir, batch_size):
    val_reader = paddle.batch(
        reader.val(data_dir=data_dir), batch_size=batch_size)
    return val_reader


def eval():
    devices = paddle.device.get_device().split(':')[0]
    places = paddle.device._convert_to_place(devices)
    exe = paddle.static.Executor(places)
    val_program, feed_target_names, fetch_targets = paddle.static.load_inference_model(
        global_config["model_dir"],
        exe,
        model_filename=global_config["model_filename"],
        params_filename=global_config["params_filename"])
    print('Loaded model from: {}'.format(global_config["model_dir"]))

    val_reader = eval_reader(data_dir, batch_size=global_config['batch_size'])
    image = paddle.static.data(
        name=global_config['input_name'],
        shape=[None, 3, 224, 224],
        dtype='float32')
    label = paddle.static.data(name='label', shape=[None, 1], dtype='int64')
    results = []
    print('Evaluating... It will take a while. Please wait...')
    for batch_id, data in enumerate(val_reader()):
        # top1_acc, top5_acc
        image = np.array([[d[0]] for d in data])
        image = image.reshape((len(data), 3, 224, 224))
        label = [[d[1]] for d in data]
        pred = exe.run(val_program,
                       feed={feed_target_names[0]: image},
                       fetch_list=fetch_targets)
        pred = np.array(pred[0])
        label = np.array(label)
        sort_array = pred.argsort(axis=1)
        top_1_pred = sort_array[:, -1:][:, ::-1]
        top_1 = np.mean(label == top_1_pred)
        top_5_pred = sort_array[:, -5:][:, ::-1]
        acc_num = 0
        for i in range(len(label)):
            if label[i][0] in top_5_pred[i]:
                acc_num += 1
        top_5 = float(acc_num) / len(label)
        results.append([top_1, top_5])
    result = np.mean(np.array(results), axis=0)
    return result[0]


def main():
    global global_config
    all_config = load_slim_config(args.config_path)
    assert "Global" in all_config, f"Key 'Global' not found in config file. \n{all_config}"
    global_config = all_config["Global"]
    global data_dir
    data_dir = global_config['data_dir']
    result = eval()
    print('Eval Top1:', result)


if __name__ == '__main__':
    paddle.enable_static()
    parser = argsparser()
    args = parser.parse_args()
    main()