latency.py 8.5 KB
Newer Older
W
wanghaoshuang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

__all__ = ["LatencyEvaluator", "TableLatencyEvaluator"]


class LatencyEvaluator(object):
    def __init__(self):
        pass

    def latency(self, graph):
        pass

    def _get_ops_from_graph(self, graph):
        assert isinstance(graph, GraphWrapper)
        ops = []
        i = 0
        for op in graph.ops():
            if op.type() in ['conv2d', 'depthwise_conv2d']:
                tmp = _conv_op_args(op)
            elif op.type() in [
                    'elementwise_add', 'elementwise_mul', 'elementwise_max'
            ]:
                tmp = _eltwise_op_args(op)
            elif op.type() in [
                    'relu', 'prelu', 'sigmoid', 'relu6', 'elu', 'brelu',
                    'leaky_relu'
            ]:
                tmp = _activation_op_args(op)
            elif op.type() == 'batch_norm':
                tmp = _batch_norm_op_args(op)
            elif op.type() == 'pool2d':
                tmp = _pooling_op_args(op)
            elif op.type() == 'batch_norm':
                tmp = _batch_norm_op_args(op)
            elif op.type() == 'softmax':
                tmp = _softmax_op_args(op)
            elif op.type() == 'mul':
                tmp = _fc_op_args(op)
            else:
                tmp = None
            if tmp:
                ops.append(tmp)
        return ops

    def _conv_op_args(op):
        assert isinstance(op, OpWrapper)
        tmp, res = [], []
        # op_name
        tmp.append('conv')
        # flag_bias
        if len(op.inputs('Bias')) == 0:
            tmp.append(0)
        else:
            tmp.append(1)
        # flag_relu
        tmp.append(int(op.attr('fuse_relu')))
        # batch size
        tmp.append(1)
        # channels, height, width
        in_shapes = op.inputs('Input')[0].shape
        tmp = tmp + [int(in_shapes[1]), int(in_shapes[2]), int(in_shapes[3])]

        # output channels
        w_shapes = op.inputs('Filter')[0].shape
        tmp.append(int(w_shapes[0]))

        # group
        tmp.append(int(op.attr('groups')))

        # kernel size
        tmp.append(int(w_shapes[2]))
        if w_shapes[2] != w_shapes[3]:
            res.append(int(w_shapes[3]))

        # padding
        paddings = op.attr('paddings')
        tmp.append(int(paddings[0]))
        if paddings[0] != paddings[1]:
            res.append(int(paddings[0]))

        # strides
        strides = op.attr('strides')
        tmp.append(int(strides[0]))
        if strides[0] != strides[1]:
            res.append(int(strides[1]))

        # dilations
        dilations = op.attr('dilations')
        tmp.append(int(dilations[0]))
        if dilations[0] != dilations[1]:
            res.append(int(dilations[1]))
        tmp = tmp + res
        return tmp

    def _batch_norm_op_args(op):
        tmp = []
        # op name
        tmp.append('batch_norm')
        # activation type
        if not op.attr('fuse_with_relu'):
            tmp.append('None')
        else:
            tmp.append('relu')
        # batch size
        tmp.append(1)
        # input channels, height, width
        in_shapes = op.inputs("X")[0].shape
        tmp = tmp + [int(in_shapes[1]), int(in_shapes[2]), int(in_shapes[3])]
        return tmp

    def _eltwise_op_args(op):
        # op name
        tmp = ['eltwise']
        # elementwise type, TODO: add more ops
        if op.type() == 'elementwise_mul':
            tmp.append(1)
        elif op.type() == 'elementwise_add':
            tmp.append(2)
        else:
            tmp.append(3)
        # batch size
        tmp.append(1)
        # input channels, height, width 
        in_shapes = op.inputs('X')[0].shape
        while len(in_shapes) < 4:
            in_shapes = in_shapes + (1, )

        for i in range(1, len(in_shapes)):
            tmp.append(int(in_shapes[i]))
        return tmp

    def _activation_op_args(op):
        tmp = []
        # activation type
        tmp.append(op.type())
        # batch size
        tmp.append(1)
        # input channels, height, width
        in_shapes = op.inputs('X')[0].shape
        while len(in_shapes) < 4:
            in_shapes = in_shapes + (1, )

        for i in range(1, len(in_shapes)):
            tmp.append(int(in_shapes[i]))
        return tmp

    def _pooling_op_args(op):
        tmp, res = [], []
        # op name
        tmp.append('pooling')
        # global pooling
        tmp.append(int(op.attr('global_pooling')))
        # batch size
        tmp.append(1)
        # channels, height, width
        in_shapes = op.inputs('X')[0].shape
        tmp = tmp + [int(in_shapes[1]), int(in_shapes[2]), int(in_shapes[3])]
        # kernel size
        ksize = op.attr('ksize')
        tmp.append(int(ksize[0]))
        if ksize[0] != ksize[1]:
            res.append(int(ksize[1]))

        # padding
        paddings = op.attr('paddings')
        tmp.append(int(paddings[0]))
        if paddings[0] != paddings[1]:
            res.append(int(paddings[1]))

        # stride
        strides = op.attr('strides')
        tmp.append(int(strides[0]))
        if strides[0] != strides[1]:
            res.append(int(strides[1]))

        # ceil mode
        tmp.append(int(op.attr('ceil_mode')))

        # pool type
        pool_type = op.attr('pooling_type')
        exclusive = op.attr('exclusive')
        if pool_type == 'max' and (not exclusive):
            tmp.append(1)
        elif pool_type == 'avg' and (not exclusive):
            tmp.append(2)
        else:
            tmp.append(3)

        tmp = tmp + res
        return tmp

    def _softmax_op_args(op):
        # op name
        tmp = ['softmax']
        # axis
        tmp.append(op.attr('axis'))
        # batch size
        tmp.append(1)
        # input channels, height, width
        in_shapes = op.inputs('X')[0].shape
        while len(in_shapes) < 4:
            in_shapes = in_shapes + (1, )

        for i in range(1, len(in_shapes)):
            tmp.append(int(in_shapes[i]))

        return tmp

    def _fc_op_args(blocks, op):
        # op name
        tmp = ['conv']
        # flag bias
        tmp.append(0)
        # flag relu
        tmp.append(0)
        # batch size 
        tmp.append(1)
        # input channels, height, width
        channels = 1
        in_shape = op.inputs('X')[0].shape
        for i in range(1, len(in_shape)):
            channels *= in_shape[i]
        tmp = tmp + [int(channels), 1, 1]
        # output channels
        tmp.append(int(op.outputs('Out')[0].shape[1]))
        # groups, kernel size, padding, stride, dilation
        tmp = tmp + [1, 1, 0, 1, 1]
        return tmp


class TableLatencyEvaluator(LatencyEvaluator):
    def __init__(self, table_file, delimiter=","):
        """
        The evaluator used to get graph's latency on some devices and infer engines.
        Args:
          - table_file(str): The path of file that records the devices latency of operators.
          - delimiter(str): The delimiter used in `table_file`.
        """
        self._table = self._load_table(table_file)
        self._delimiter = delimiter

    def _load_table(self, table_file):
        table = {}
        with open(table_file) as f:
            line = f.readline()
            self.infer_engine_name, self.device_name, self.create_time = line.strip(
            ).split("\t")
            for line in f:
                op_str, latency = line.strip().split("\t")
                table[op_str] = float(latency)
        return table

    def _op_latency(self, op_str):
        assert op_str in self._table
        return self._table[op_str]

    def latency(self, graph):
        """
        Get latency of target graph.
        Args:
            - graph(GrapWrapper | Program): The graph to be evaluated.
        Returns:
            latency(float): The latency of given graph on current evaluator.
        """
        total_latency = 0
        if isinstance(graph, Program):
            graph = GraphWrapper(graph)
        assert isinstance(graph, GraphWrapper)
        for op in self._get_ops_from_graph(graph):
            total_latency += self._op_latency(self._delimiter.join(op))
        return total_latency