unstructured_pruner.py 6.2 KB
Newer Older
M
minghaoBD 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
import numpy as np
import paddle
import logging
from paddleslim.common import get_logger

__all__ = ["UnstructuredPruner"]

_logger = get_logger(__name__, level=logging.INFO)


class UnstructuredPruner():
    """
    The unstructure pruner.
    Args:
      - model(Paddle.nn.Layer): The model to be pruned.
      - mode(str): Pruning mode, must be selected from 'ratio' and 'threshold'.
      - threshold(float): The parameters whose absolute values are smaller than the THRESHOLD will be zeros. Default: 0.01
      - ratio(float): The parameters whose absolute values are in the smaller part decided by the ratio will be zeros. Default: 0.3
      - skip_params_func(function): The function used to select the parameters which should be skipped when performing pruning. Default: normalization-related params. 
    """

    def __init__(self,
                 model,
                 mode,
                 threshold=0.01,
                 ratio=0.3,
                 skip_params_func=None):
        assert mode in ('ratio', 'threshold'
                        ), "mode must be selected from 'ratio' and 'threshold'"
        self.model = model
        self.mode = mode
        self.threshold = threshold
        self.ratio = ratio
        if skip_params_func is None: skip_params_func = self._get_skip_params
        self.skip_params = skip_params_func(model)
        self._apply_masks()

    def mask_parameters(self, param, mask):
        """
        Update masks and parameters. It is executed to each layer before each iteration.
        User can overwrite this function in subclass to implememt different pruning stragies.
        Args:
          - parameters(list<Tensor>): The parameters to be pruned.
          - masks(list<Tensor>): The masks used to keep zero values in parameters.
        """
        bool_tmp = (paddle.abs(param) >= self.threshold)
        paddle.assign(mask * bool_tmp, output=mask)
        param_tmp = param * mask
        param_tmp.stop_gradient = True
        paddle.assign(param_tmp, output=param)

    def _apply_masks(self):
        self.masks = {}
        for name, sub_layer in self.model.named_sublayers():
            for param in sub_layer.parameters(include_sublayers=False):
                tmp_array = np.ones(param.shape, dtype=np.float32)
                mask_name = "_".join([param.name.replace(".", "_"), "mask"])
                if mask_name not in sub_layer._buffers:
                    sub_layer.register_buffer(mask_name,
                                              paddle.to_tensor(tmp_array))
                self.masks[param.name] = sub_layer._buffers[mask_name]
        for name, sub_layer in self.model.named_sublayers():
            sub_layer.register_forward_pre_hook(self._forward_pre_hook)

    def update_threshold(self):
        '''
        Update the threshold after each optimization step.
        User should overwrite this method togther with self.mask_parameters()
        '''
        params_flatten = []
        for name, sub_layer in self.model.named_sublayers():
            if not self._should_prune_layer(sub_layer):
                continue
            for param in sub_layer.parameters(include_sublayers=False):
                t_param = param.value().get_tensor()
                v_param = np.array(t_param)
                params_flatten.append(v_param.flatten())
        params_flatten = np.concatenate(params_flatten, axis=0)
        total_length = params_flatten.size
        self.threshold = np.sort(np.abs(params_flatten))[max(
            0, round(self.ratio * total_length) - 1)].item()

    def step(self):
        """
        Update the threshold after each optimization step.
        """
        if self.mode == 'ratio':
            self.update_threshold()
        elif self.mode == 'threshold':
            return

    def _forward_pre_hook(self, layer, input):
        if not self._should_prune_layer(layer):
            return input
        for param in layer.parameters(include_sublayers=False):
            mask = self.masks.get(param.name)
            self.mask_parameters(param, mask)
        return input

    def update_params(self):
        """
        Update the parameters given self.masks, usually called before saving models and evaluation step during training. 
        If you load a sparse model and only want to inference, no need to call the method.
        """
        for name, sub_layer in self.model.named_sublayers():
            for param in sub_layer.parameters(include_sublayers=False):
                mask = self.masks.get(param.name)
                param_tmp = param * mask
                param_tmp.stop_gradient = True
                paddle.assign(param_tmp, output=param)

    @staticmethod
    def total_sparse(model):
        """
        This static function is used to get the whole model's density (1-sparsity).
        It is static because during testing, we can calculate sparsity without initializing a pruner instance.
        
        Args:
          - model(Paddle.Model): The sparse model.
        Returns:
          - ratio(float): The model's density.
        """
        total = 0
        values = 0
        for name, sub_layer in model.named_sublayers():
            for param in sub_layer.parameters(include_sublayers=False):
                total += np.product(param.shape)
                values += len(paddle.nonzero(param))
        ratio = float(values) / total
        return ratio

    def _get_skip_params(self, model):
        """
        This function is used to check whether the given model's layers are valid to be pruned. 
        Usually, the convolutions are to be pruned while we skip the normalization-related parameters.
        Deverlopers could replace this function by passing their own when initializing the UnstructuredPuner instance.

        Args:
          - model(Paddle.nn.Layer): the current model waiting to be checked.
        Return:
          - skip_params(set<String>): a set of parameters' names
        """
        skip_params = set()
        for _, sub_layer in model.named_sublayers():
            if type(sub_layer).__name__.split('.')[
                    -1] in paddle.nn.norm.__all__:
                skip_params.add(sub_layer.full_name())
        return skip_params

    def _should_prune_layer(self, layer):
        should_prune = layer.full_name() not in self.skip_params
        return should_prune