sa_nas.py 5.4 KB
Newer Older
W
wanghaoshuang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import socket
import logging
import numpy as np
import paddle.fluid as fluid
from ..core import VarWrapper, OpWrapper, GraphWrapper
from ..common import SAController
from ..common import get_logger
from ..analysis import flops

from ..common import ControllerServer
from ..common import ControllerClient

__all__ = ["SANAS"]

_logger = get_logger(__name__, level=logging.INFO)


class SANAS(object):
    def __init__(self,
                 configs,
                 flops=None,
                 latency=None,
                 server_addr=("", 0),
                 init_temperature=100,
                 reduce_rate=0.85,
                 max_try_number=300,
                 max_client_num=10,
                 search_steps=300,
                 key="sa_nas",
                 is_server=True):
        """
        Search a group of ratios used to prune program.
        Args:
            configs(list<tuple>): A list of search space configuration with format (key, input_size, output_size, block_num).
                                  `key` is the name of search space with data type str. `input_size` and `output_size`  are
                                   input size and output size of searched sub-network. `block_num` is the number of blocks in searched network.
            max_flops(int): The max flops of searched network. None means no constrains. Default: None.
            max_latency(float): The max latency of searched network. None means no constrains. Default: None.
            server_addr(tuple): A tuple of server ip and server port for controller server. 
            init_temperature(float): The init temperature used in simulated annealing search strategy.
            reduce_rate(float): The decay rate used in simulated annealing search strategy.
            max_try_number(int): The max number of trying to generate legal tokens.
            max_client_num(int): The max number of connections of controller server.
            search_steps(int): The steps of searching.
            key(str): Identity used in communication between controller server and clients.
            is_server(bool): Whether current host is controller server. Default: True.
        """

        self._reduce_rate = reduce_rate
        self._init_temperature = init_temperature
        self._max_try_number = max_try_number
        self._is_server = is_server
        self._max_flops = max_flops
        self._max_latency = max_latency

        self._configs = configs

        factory = SearchSpaceFactory()
        self._search_space = factory.get_search_space(configs)
        init_tokens = self._search_space.init_tokens()
        range_table = self._search_space.range_table()

        controller = SAController(range_table, self._reduce_rate,
                                  self._init_temperature, self._max_try_number,
                                  init_tokens, self._constrain_func)

        server_ip, server_port = server_addr
        if server_ip == None or server_ip == "":
            server_ip = self._get_host_ip()

        self._controller_server = ControllerServer(
            controller=controller,
            address=(server_ip, server_port),
            max_client_num=max_client_num,
            search_steps=search_steps,
            key=key)

        # create controller server
        if self._is_server:
            self._controller_server.start()

        self._controller_client = ControllerClient(
            self._controller_server.ip(),
            self._controller_server.port(),
            key=key)

        self._iter = 0

    def _get_host_ip(self):
        return socket.gethostbyname(socket.gethostname())

    def _constrain_func(self, tokens):
        if (self._max_flops is None) and (self._max_latency is None):
            return True
        archs = self._search_space.token2arch(tokens)
        main_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(main_program, startup_program):
            i = 0
            for config, arch in zip(self._configs, archs):
                input = fluid.data(
                    name="data_{}".format(i),
                    shape=[None, 3, input_size, input_size],
                    dtype="float32")
                output = arch(input)
                i += 1
        return flops(main_program) < self._max_flops

    def next_archs(self):
        """
        Get next network architectures.
        Returns:
            list<function>: A list of functions that define networks.
        """
        self._current_tokens = self._controller_client.next_tokens()
        archs = self._search_space.token2arch(self._current_tokens)
        return archs

    def reward(self, score):
        """
        Return reward of current searched network.
        Args:
            score(float): The score of current searched network.
        """
        self._controller_client.update(self._current_tokens, score)
        self._iter += 1