train.py 8.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
import os
import sys
import logging
import paddle
import argparse
import functools
import math
import time
import numpy as np
import paddle.fluid as fluid
from paddleslim.prune import AutoPruner
from paddleslim.common import get_logger
from paddleslim.analysis import flops
sys.path.append(sys.path[0] + "/../")
import models
from utility import add_arguments, print_arguments

_logger = get_logger(__name__, level=logging.INFO)

parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
add_arg('batch_size',       int,  64 * 4,                 "Minibatch size.")
add_arg('use_gpu',          bool, True,                "Whether to use GPU or not.")
add_arg('model',            str,  "MobileNet",                "The target model.")
add_arg('pretrained_model', str,  "../pretrained_model/MobileNetV1_pretained",                "Whether to use pretrained model.")
add_arg('lr',               float,  0.1,               "The learning rate used to fine-tune pruned model.")
add_arg('lr_strategy',      str,  "piecewise_decay",   "The learning rate decay strategy.")
add_arg('l2_decay',         float,  3e-5,               "The l2_decay parameter.")
add_arg('momentum_rate',    float,  0.9,               "The value of momentum_rate.")
add_arg('num_epochs',       int,  120,               "The number of total epochs.")
add_arg('total_images',     int,  1281167,               "The number of total training images.")
parser.add_argument('--step_epochs', nargs='+', type=int, default=[30, 60, 90], help="piecewise decay step")
add_arg('config_file',      str, None,                 "The config file for compression with yaml format.")
add_arg('data',             str, "mnist",                 "Which data to use. 'mnist' or 'imagenet'")
add_arg('log_period',       int, 10,                 "Log period in batches.")
add_arg('test_period',      int, 10,                 "Test period in epoches.")
# yapf: enable

model_list = [m for m in dir(models) if "__" not in m]


def piecewise_decay(args):
    step = int(math.ceil(float(args.total_images) / args.batch_size))
    bd = [step * e for e in args.step_epochs]
    lr = [args.lr * (0.1**i) for i in range(len(bd) + 1)]
    learning_rate = fluid.layers.piecewise_decay(boundaries=bd, values=lr)
    optimizer = fluid.optimizer.Momentum(
        learning_rate=learning_rate,
        momentum=args.momentum_rate,
        regularization=fluid.regularizer.L2Decay(args.l2_decay))
    return optimizer


def cosine_decay(args):
    step = int(math.ceil(float(args.total_images) / args.batch_size))
    learning_rate = fluid.layers.cosine_decay(
        learning_rate=args.lr, step_each_epoch=step, epochs=args.num_epochs)
    optimizer = fluid.optimizer.Momentum(
        learning_rate=learning_rate,
        momentum=args.momentum_rate,
        regularization=fluid.regularizer.L2Decay(args.l2_decay))
    return optimizer


def create_optimizer(args):
    if args.lr_strategy == "piecewise_decay":
        return piecewise_decay(args)
    elif args.lr_strategy == "cosine_decay":
        return cosine_decay(args)


def compress(args):

    train_reader = None
    test_reader = None
    if args.data == "mnist":
        import paddle.dataset.mnist as reader
        train_reader = reader.train()
        val_reader = reader.test()
        class_dim = 10
        image_shape = "1,28,28"
    elif args.data == "imagenet":
        import imagenet_reader as reader
        train_reader = reader.train()
        val_reader = reader.val()
        class_dim = 1000
        image_shape = "3,224,224"
    else:
        raise ValueError("{} is not supported.".format(args.data))

    image_shape = [int(m) for m in image_shape.split(",")]
    assert args.model in model_list, "{} is not in lists: {}".format(
        args.model, model_list)
    image = fluid.layers.data(name='image', shape=image_shape, dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')
    # model definition
    model = models.__dict__[args.model]()
    out = model.net(input=image, class_dim=class_dim)
    cost = fluid.layers.cross_entropy(input=out, label=label)
    avg_cost = fluid.layers.mean(x=cost)
    acc_top1 = fluid.layers.accuracy(input=out, label=label, k=1)
    acc_top5 = fluid.layers.accuracy(input=out, label=label, k=5)
    val_program = fluid.default_main_program().clone(for_test=True)
    opt = create_optimizer(args)
    opt.minimize(avg_cost)
    place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)
    exe.run(fluid.default_startup_program())

    if args.pretrained_model:

        def if_exist(var):
            return os.path.exists(
                os.path.join(args.pretrained_model, var.name))

        fluid.io.load_vars(exe, args.pretrained_model, predicate=if_exist)

    val_reader = paddle.batch(val_reader, batch_size=args.batch_size)
    train_reader = paddle.batch(
        train_reader, batch_size=args.batch_size, drop_last=True)

    train_feeder = feeder = fluid.DataFeeder([image, label], place)
    val_feeder = feeder = fluid.DataFeeder(
        [image, label], place, program=val_program)

    def test(epoch, program):
        batch_id = 0
        acc_top1_ns = []
        acc_top5_ns = []
        for data in val_reader():
            start_time = time.time()
            acc_top1_n, acc_top5_n = exe.run(
                program,
                feed=train_feeder.feed(data),
                fetch_list=[acc_top1.name, acc_top5.name])
            end_time = time.time()
            if batch_id % args.log_period == 0:
                _logger.info(
                    "Eval epoch[{}] batch[{}] - acc_top1: {}; acc_top5: {}; time: {}".
                    format(epoch, batch_id,
                           np.mean(acc_top1_n),
                           np.mean(acc_top5_n), end_time - start_time))
            acc_top1_ns.append(np.mean(acc_top1_n))
            acc_top5_ns.append(np.mean(acc_top5_n))
            batch_id += 1

        _logger.info("Final eval epoch[{}] - acc_top1: {}; acc_top5: {}".
                     format(epoch,
                            np.mean(np.array(acc_top1_ns)),
                            np.mean(np.array(acc_top5_ns))))
        return np.mean(np.array(acc_top1_ns))

    def train(epoch, program):

        build_strategy = fluid.BuildStrategy()
        exec_strategy = fluid.ExecutionStrategy()
        train_program = fluid.compiler.CompiledProgram(
            program).with_data_parallel(
                loss_name=avg_cost.name,
                build_strategy=build_strategy,
                exec_strategy=exec_strategy)

        batch_id = 0
        for data in train_reader():
            start_time = time.time()
            loss_n, acc_top1_n, acc_top5_n = exe.run(
                train_program,
                feed=train_feeder.feed(data),
                fetch_list=[avg_cost.name, acc_top1.name, acc_top5.name])
            end_time = time.time()
            loss_n = np.mean(loss_n)
            acc_top1_n = np.mean(acc_top1_n)
            acc_top5_n = np.mean(acc_top5_n)
            if batch_id % args.log_period == 0:
                _logger.info(
                    "epoch[{}]-batch[{}] - loss: {}; acc_top1: {}; acc_top5: {}; time: {}".
                    format(epoch, batch_id, loss_n, acc_top1_n, acc_top5_n,
                           end_time - start_time))
            batch_id += 1

    params = []
    for param in fluid.default_main_program().global_block().all_parameters():
        if "_sep_weights" in param.name:
            params.append(param.name)

    pruner = AutoPruner(
        val_program,
        fluid.global_scope(),
        place,
        params=params,
        init_ratios=[0.33] * len(params),
        pruned_flops=0.5,
        pruned_latency=None,
        server_addr=("", 0),
        init_temperature=100,
        reduce_rate=0.85,
        max_try_number=300,
        max_client_num=10,
        search_steps=100,
        max_ratios=0.9,
        min_ratios=0.,
        key="auto_pruner")

    while True:
        pruned_program, pruned_val_program = pruner.prune(
            fluid.default_main_program(), val_program)
        for i in range(1):
            train(i, pruned_program)
        score = test(0, pruned_val_program)
        pruner.reward(score)


def main():
    args = parser.parse_args()
    print_arguments(args)
    compress(args)


if __name__ == '__main__':
    main()