evaluate.py 5.1 KB
Newer Older
M
minghaoBD 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
import os
import sys
import logging
import paddle
import argparse
import functools
import math
import time
import numpy as np
import paddle.fluid as fluid
sys.path.append(os.path.join(os.path.dirname("__file__"), os.path.pardir))
from paddleslim.prune.unstructured_pruner import UnstructuredPruner
from paddleslim.common import get_logger
import models
from utility import add_arguments, print_arguments
import paddle.vision.transforms as T

_logger = get_logger(__name__, level=logging.INFO)

parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
add_arg('batch_size',       int,  64*12,                 "Minibatch size.")
add_arg('use_gpu',          bool, True,                "Whether to use GPU or not.")
add_arg('model',            str,  "MobileNet",                "The target model.")
add_arg('pruned_model', str,  "models",                "Whether to use pretrained model.")
add_arg('data',             str, "mnist",                 "Which data to use. 'mnist' or 'imagenet'.")
add_arg('log_period',       int, 100,                 "Log period in batches.")
# yapf: enable

model_list = models.__all__


def compress(args):
    train_reader = None
    test_reader = None
    if args.data == "mnist":
        transform = T.Compose([T.Transpose(), T.Normalize([127.5], [127.5])])
        train_dataset = paddle.vision.datasets.MNIST(
            mode='train', backend="cv2", transform=transform)
        val_dataset = paddle.vision.datasets.MNIST(
            mode='test', backend="cv2", transform=transform)
        class_dim = 10
        image_shape = "1,28,28"
    elif args.data == "imagenet":
        import imagenet_reader as reader
        train_dataset = reader.ImageNetDataset(data_dir='/data', mode='train')
        val_dataset = reader.ImageNetDataset(data_dir='/data', mode='val')
        class_dim = 1000
        image_shape = "3,224,224"
    else:
        raise ValueError("{} is not supported.".format(args.data))
    image_shape = [int(m) for m in image_shape.split(",")]
    assert args.model in model_list, "{} is not in lists: {}".format(args.model,
                                                                     model_list)
    places = paddle.static.cuda_places(
    ) if args.use_gpu else paddle.static.cpu_places()
    place = places[0]
    exe = paddle.static.Executor(place)
    image = paddle.static.data(
        name='image', shape=[None] + image_shape, dtype='float32')
    label = paddle.static.data(name='label', shape=[None, 1], dtype='int64')

    batch_size_per_card = int(args.batch_size / len(places))
    valid_loader = paddle.io.DataLoader(
        val_dataset,
        places=place,
        feed_list=[image, label],
        drop_last=False,
        return_list=False,
        use_shared_memory=True,
        batch_size=batch_size_per_card,
        shuffle=False)
    step_per_epoch = int(np.ceil(len(train_dataset) * 1. / args.batch_size))

    # model definition
    model = models.__dict__[args.model]()
    out = model.net(input=image, class_dim=class_dim)
    cost = paddle.nn.functional.loss.cross_entropy(input=out, label=label)
    avg_cost = paddle.mean(x=cost)
    acc_top1 = paddle.metric.accuracy(input=out, label=label, k=1)
    acc_top5 = paddle.metric.accuracy(input=out, label=label, k=5)

    val_program = paddle.static.default_main_program().clone(for_test=True)

    exe.run(paddle.static.default_startup_program())

    if args.pruned_model:

        def if_exist(var):
            return os.path.exists(os.path.join(args.pruned_model, var.name))

        _logger.info("Load pruned model from {}".format(args.pruned_model))
        paddle.fluid.io.load_vars(exe, args.pruned_model, predicate=if_exist)

    def test(epoch, program):
        acc_top1_ns = []
        acc_top5_ns = []

        _logger.info("The current density of the inference model is {}%".format(
            round(100 * UnstructuredPruner.total_sparse(
                paddle.static.default_main_program()), 2)))
        for batch_id, data in enumerate(valid_loader):
            start_time = time.time()
            acc_top1_n, acc_top5_n = exe.run(
                program,
                feed={
                    "image": data[0].get('image'),
                    "label": data[0].get('label'),
                },
                fetch_list=[acc_top1.name, acc_top5.name])
            end_time = time.time()
            if batch_id % args.log_period == 0:
                _logger.info(
                    "Eval epoch[{}] batch[{}] - acc_top1: {}; acc_top5: {}; time: {}".
                    format(epoch, batch_id,
                           np.mean(acc_top1_n),
                           np.mean(acc_top5_n), end_time - start_time))
            acc_top1_ns.append(np.mean(acc_top1_n))
            acc_top5_ns.append(np.mean(acc_top5_n))

        _logger.info("Final eval epoch[{}] - acc_top1: {}; acc_top5: {}".format(
            epoch,
            np.mean(np.array(acc_top1_ns)), np.mean(np.array(acc_top5_ns))))

    test(0, val_program)


def main():
    paddle.enable_static()
    args = parser.parse_args()
    print_arguments(args)
    compress(args)


if __name__ == '__main__':
    main()