test_quant_post_quant_aware.py 5.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
import sys
import random
sys.path.append("../")
import unittest
import paddle
import paddle.nn as nn
from paddle.io import Dataset
from paddleslim.quant import quant_aware, convert
from paddle.nn import TransformerEncoderLayer, TransformerEncoder, Linear
from paddleslim.quant import quant_aware, convert
from static_case import StaticCase
sys.path.append("../demo")
from models import MobileNet
from layers import conv_bn_layer
import paddle.dataset.mnist as reader
from paddle.fluid.framework import IrGraph
from paddle.fluid import core
import numpy as np

np.random.seed(0)
random.seed(0)
paddle.seed(0)


class RandomDataset(Dataset):
    def __init__(self, num_samples):
        self.num_samples = num_samples

    def __getitem__(self, idx):
        enc_input = np.random.random([4, 128]).astype('float32')
        attn_mask = np.random.random([2, 4, 4]).astype('float32')
        label = np.random.randint(0, 2, (1, )).astype('int64')
        return enc_input, attn_mask, label

    def __len__(self):
        return self.num_samples


class TestQuantPostQuantAwareCase1(StaticCase):
    def test_accuracy(self):
        def simple_transformer(enc_input, attn_mask):
            encoder_layer = nn.TransformerEncoderLayer(128, 2, 512)
            encoder = TransformerEncoder(encoder_layer, 2)
            encoder_output = encoder(enc_input, attn_mask)
            first_token = encoder_output[:, 0]
            bias = paddle.full(shape=[1, 128], fill_value=1e-6)
            linear = Linear(128, 2)
            logits = linear(first_token + bias)
            return logits

        enc_input = paddle.static.data(
            name='enc_input', shape=[None, 4, 128], dtype='float32')
        attn_mask = paddle.static.data(
            name='attn_mask', shape=[None, 2, 4, 4], dtype='float32')
        label = paddle.static.data(name='label', shape=[None, 1], dtype='int64')
        out = simple_transformer(enc_input, attn_mask)
        cost = paddle.nn.functional.loss.cross_entropy(input=out, label=label)
        avg_cost = paddle.mean(x=cost)
        acc_top1 = paddle.metric.accuracy(input=out, label=label, k=1)
        optimizer = paddle.optimizer.Momentum(
            momentum=0.9,
            learning_rate=0.01,
            weight_decay=paddle.regularizer.L2Decay(4e-5))
        optimizer.minimize(avg_cost)
        main_prog = paddle.static.default_main_program()
        val_prog = main_prog.clone(for_test=True)

        place = paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda(
        ) else paddle.CPUPlace()
        exe = paddle.static.Executor(place)
        exe.run(paddle.static.default_startup_program())

        train_dataset = RandomDataset(100)
        test_dataset = RandomDataset(50)
        train_loader = paddle.io.DataLoader(
            train_dataset,
            places=place,
            feed_list=[enc_input, attn_mask, label],
            drop_last=True,
            return_list=False,
            batch_size=10)
        valid_loader = paddle.io.DataLoader(
            test_dataset,
            places=place,
            feed_list=[enc_input, attn_mask, label],
            batch_size=10,
            return_list=False)

        def train(program):
            iter = 0
            for data in train_loader():
                cost, top1 = exe.run(program,
                                     feed=data,
                                     fetch_list=[avg_cost, acc_top1])
                iter += 1
                if iter % 100 == 0:
                    print('train iter={}, avg loss {}, acc_top1 {}'.format(
                        iter, cost, top1))

        def test(program):
            iter = 0
            result = [[], []]
            for data in valid_loader():
                cost, top1 = exe.run(program,
                                     feed=data,
                                     fetch_list=[avg_cost, acc_top1])
                iter += 1
                if iter % 100 == 0:
                    print('eval iter={}, avg loss {}, acc_top1 {}'.format(
                        iter, cost, top1))
                result[0].append(cost)
                result[1].append(top1)
            print(' avg loss {}, acc_top1 {}'.format(
                np.mean(result[0]), np.mean(result[1])))
            return np.mean(result[1])

        train(main_prog)
        top1_1 = test(main_prog)

        config = {
            'weight_quantize_type': 'channel_wise_abs_max',
            'activation_quantize_type': 'moving_average_abs_max',
            'quantize_op_types':
            ['conv2d', 'depthwise_conv2d', 'mul', 'matmul', 'elementwise_add'],
            'quant_post_first': True,
            'scale_trainable': True
        }
        calib_config = {
            'data_loader': valid_loader,
            'algo': 'abs_max',
            'feed_list': ['enc_input', 'attn_mask', 'label'],
            'fetch_list': [avg_cost, acc_top1]
        }
        quant_eval_prog, scale_dict, _, _ = quant_aware(
            val_prog,
            place,
            config,
            for_test=True,
            calib_config=calib_config,
            model_type='transformer',
            return_scale_dict=True)
        quant_train_prog = quant_aware(
            main_prog,
            place,
            config,
            for_test=False,
            calib_config=calib_config,
            return_program=True,
            scale_dict=scale_dict,
            model_type='transformer')
        train(quant_train_prog)
        quant_eval_prog, int8_prog = convert(
            quant_eval_prog, place, config, save_int8=True)
        top1_2 = test(quant_eval_prog)
        # values before quantization and after quantization should be close
        print("before quantization: top1: {}".format(top1_1))
        print("after quantization: top1: {}".format(top1_2))


if __name__ == '__main__':
    unittest.main()