rl_nas.py 6.1 KB
Newer Older
C
ceci3 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
# Copyright (c) 2020  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import socket
import logging
import numpy as np
import json
import hashlib
import time
import paddle.fluid as fluid
from ..common.RL_controller.utils import RLCONTROLLER
from ..common import get_logger

from ..common import Server
from ..common import Client
from .search_space import SearchSpaceFactory

_logger = get_logger(__name__, level=logging.INFO)

__all__ = ['RLNAS']


class RLNAS(object):
    """ 
    Controller with Reinforcement Learning. 
    Args:
        key(str): The actual reinforcement learning method. Current support in paddleslim is `LSTM` and `DDPG`.
        configs(list<tuple>): A list of search space configuration with format [(key, {input_size,
                              output_size, block_num, block_mask})]. `key` is the name of search space
                              with data type str. `input_size` and `output_size`  are input size and
                              output size of searched sub-network. `block_num` is the number of blocks
                              in searched network, `block_mask` is a list consists by 0 and 1, 0 means
                              normal block, 1 means reduction block.
        use_gpu(bool): Whether to use gpu in controller. Default: False.
        server_addr(tuple): Server address, including ip and port of server. If ip is None or "", will
                            use host ip if is_server = True. Default: ("", 8881).
        is_server(bool): Whether current host is controller server. Default: True.
        is_sync(bool): Whether to update controller in synchronous mode. Default: False.
        save_controller(str|None): The directory of controller to save, if set to None, not save checkpoint.
                                      Default: None.
        load_controller(str|None): The directory of controller to load, if set to None, not load checkpoint.
                                      Default: None.
        **kwargs: Additional keyword arguments. 
    """

    def __init__(self,
                 key,
                 configs,
                 use_gpu=False,
                 server_addr=("", 8881),
                 is_server=True,
                 is_sync=False,
                 save_controller=None,
                 load_controller=None,
                 **kwargs):
        if not is_server:
            assert server_addr[
                0] != "", "You should set the IP and port of server when is_server is False."

        self._configs = configs
        factory = SearchSpaceFactory()
        self._search_space = factory.get_search_space(configs)
        self.range_tables = self._search_space.range_table()
        self.save_controller = save_controller
        self.load_controller = load_controller

        cls = RLCONTROLLER.get(key.upper())

        server_ip, server_port = server_addr
        if server_ip == None or server_ip == "":
            server_ip = self._get_host_ip()

        self._controller = cls(range_tables=self.range_tables,
                               use_gpu=use_gpu,
                               **kwargs)

        if is_server:
            max_client_num = 300
            self._controller_server = Server(
                controller=self._controller,
                address=(server_ip, server_port),
                is_sync=is_sync,
                save_controller=self.save_controller,
                load_controller=self.load_controller)
            self._controller_server.start()

        self._client_name = hashlib.md5(
            str(time.time() + np.random.randint(1, 10000)).encode(
                "utf-8")).hexdigest()
        self._controller_client = Client(
            controller=self._controller,
            address=(server_ip, server_port),
            client_name=self._client_name)

        self._current_tokens = None

    def _get_host_ip(self):
        try:
            return socket.gethostbyname(socket.gethostname())
        except:
            return socket.gethostbyname('localhost')

    def next_archs(self, obs=None):
        """ 
        Get next archs
        Args:
            obs(int|np.array): observations in env.
        """
        archs = []
        self._current_tokens = self._controller_client.next_tokens(obs)
        _logger.info("current tokens: {}".format(self._current_tokens))
        for token in self._current_tokens:
            archs.append(self._search_space.token2arch(token))

        return archs

    def reward(self, rewards, **kwargs):
        """ 
        reward the score and to train controller
        Args:
            rewards(float|list<float>): rewards get by tokens.
            **kwargs: Additional keyword arguments. 
        """
        return self._controller_client.update(rewards, **kwargs)

    def final_archs(self, batch_obs):
        """
        Get finally architecture
        Args:
            batch_obs(int|np.array): observations in env.
        """
        final_tokens = self._controller_client.next_tokens(
            batch_obs, is_inference=True)
        _logger.info("Final tokens: {}".format(final_tokens))
        archs = []
        for token in final_tokens:
            arch = self._search_space.token2arch(token)
            archs.append(arch)

        return archs

    def tokens2arch(self, tokens):
        """
        Convert tokens to model architectures.
        Args
            tokens<list>: A list of token. The length and range based on search space.:
        Returns:
            list<function>: A model architecture instance according to tokens.
        """
        return self._search_space.token2arch(tokens)