latency.py 8.9 KB
Newer Older
W
wanghaoshuang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

C
ceci3 已提交
15 16
from paddle.fluid import Program
from ..core import GraphWrapper, OpWrapper
W
wanghaoshuang 已提交
17 18 19 20 21 22 23 24 25 26
__all__ = ["LatencyEvaluator", "TableLatencyEvaluator"]


class LatencyEvaluator(object):
    def __init__(self):
        pass

    def latency(self, graph):
        pass

C
ceci3 已提交
27
    def _get_ops_from_graph(self, graph, only_conv):
W
wanghaoshuang 已提交
28 29 30 31 32
        assert isinstance(graph, GraphWrapper)
        ops = []
        i = 0
        for op in graph.ops():
            if op.type() in ['conv2d', 'depthwise_conv2d']:
C
ceci3 已提交
33
                tmp = self._conv_op_args(op)
W
wanghaoshuang 已提交
34 35
            elif op.type() in [
                    'elementwise_add', 'elementwise_mul', 'elementwise_max'
C
ceci3 已提交
36
            ] and only_conv == False:
C
ceci3 已提交
37
                tmp = self._eltwise_op_args(op)
W
wanghaoshuang 已提交
38 39 40
            elif op.type() in [
                    'relu', 'prelu', 'sigmoid', 'relu6', 'elu', 'brelu',
                    'leaky_relu'
C
ceci3 已提交
41
            ] and only_conv == False:
C
ceci3 已提交
42
                tmp = self._activation_op_args(op)
C
ceci3 已提交
43
            elif op.type() == 'batch_norm' and only_conv == False:
C
ceci3 已提交
44
                tmp = self._batch_norm_op_args(op)
C
ceci3 已提交
45
            elif op.type() == 'pool2d' and only_conv == False:
C
ceci3 已提交
46
                tmp = self._pooling_op_args(op)
C
ceci3 已提交
47
            elif op.type() == 'softmax' and only_conv == False:
C
ceci3 已提交
48
                tmp = self._softmax_op_args(op)
C
ceci3 已提交
49
            elif op.type() == 'mul' and only_conv == False:
C
ceci3 已提交
50
                tmp = self._fc_op_args(op)
W
wanghaoshuang 已提交
51 52 53 54 55 56
            else:
                tmp = None
            if tmp:
                ops.append(tmp)
        return ops

C
ceci3 已提交
57
    def _conv_op_args(self, op):
W
wanghaoshuang 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71
        assert isinstance(op, OpWrapper)
        tmp, res = [], []
        # op_name
        tmp.append('conv')
        # flag_bias
        if len(op.inputs('Bias')) == 0:
            tmp.append(0)
        else:
            tmp.append(1)
        # flag_relu
        tmp.append(int(op.attr('fuse_relu')))
        # batch size
        tmp.append(1)
        # channels, height, width
C
ceci3 已提交
72
        in_shapes = op.inputs('Input')[0].shape()
W
wanghaoshuang 已提交
73 74 75
        tmp = tmp + [int(in_shapes[1]), int(in_shapes[2]), int(in_shapes[3])]

        # output channels
C
ceci3 已提交
76
        w_shapes = op.inputs('Filter')[0].shape()
W
wanghaoshuang 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
        tmp.append(int(w_shapes[0]))

        # group
        tmp.append(int(op.attr('groups')))

        # kernel size
        tmp.append(int(w_shapes[2]))
        if w_shapes[2] != w_shapes[3]:
            res.append(int(w_shapes[3]))

        # padding
        paddings = op.attr('paddings')
        tmp.append(int(paddings[0]))
        if paddings[0] != paddings[1]:
            res.append(int(paddings[0]))

        # strides
        strides = op.attr('strides')
        tmp.append(int(strides[0]))
        if strides[0] != strides[1]:
            res.append(int(strides[1]))

        # dilations
        dilations = op.attr('dilations')
        tmp.append(int(dilations[0]))
        if dilations[0] != dilations[1]:
            res.append(int(dilations[1]))
        tmp = tmp + res
        return tmp

C
ceci3 已提交
107
    def _batch_norm_op_args(self, op):
W
wanghaoshuang 已提交
108 109 110 111 112 113 114 115 116 117 118
        tmp = []
        # op name
        tmp.append('batch_norm')
        # activation type
        if not op.attr('fuse_with_relu'):
            tmp.append('None')
        else:
            tmp.append('relu')
        # batch size
        tmp.append(1)
        # input channels, height, width
C
ceci3 已提交
119
        in_shapes = op.inputs("X")[0].shape()
W
wanghaoshuang 已提交
120 121 122
        tmp = tmp + [int(in_shapes[1]), int(in_shapes[2]), int(in_shapes[3])]
        return tmp

C
ceci3 已提交
123
    def _eltwise_op_args(self, op):
W
wanghaoshuang 已提交
124 125 126 127 128 129 130 131 132 133 134 135
        # op name
        tmp = ['eltwise']
        # elementwise type, TODO: add more ops
        if op.type() == 'elementwise_mul':
            tmp.append(1)
        elif op.type() == 'elementwise_add':
            tmp.append(2)
        else:
            tmp.append(3)
        # batch size
        tmp.append(1)
        # input channels, height, width 
C
ceci3 已提交
136
        in_shapes = op.inputs('X')[0].shape()
W
wanghaoshuang 已提交
137 138 139 140 141 142 143
        while len(in_shapes) < 4:
            in_shapes = in_shapes + (1, )

        for i in range(1, len(in_shapes)):
            tmp.append(int(in_shapes[i]))
        return tmp

C
ceci3 已提交
144
    def _activation_op_args(self, op):
W
wanghaoshuang 已提交
145 146 147 148 149 150
        tmp = []
        # activation type
        tmp.append(op.type())
        # batch size
        tmp.append(1)
        # input channels, height, width
C
ceci3 已提交
151
        in_shapes = op.inputs('X')[0].shape()
W
wanghaoshuang 已提交
152 153 154 155 156 157 158
        while len(in_shapes) < 4:
            in_shapes = in_shapes + (1, )

        for i in range(1, len(in_shapes)):
            tmp.append(int(in_shapes[i]))
        return tmp

C
ceci3 已提交
159
    def _pooling_op_args(self, op):
W
wanghaoshuang 已提交
160 161 162 163 164 165 166 167
        tmp, res = [], []
        # op name
        tmp.append('pooling')
        # global pooling
        tmp.append(int(op.attr('global_pooling')))
        # batch size
        tmp.append(1)
        # channels, height, width
C
ceci3 已提交
168
        in_shapes = op.inputs('X')[0].shape()
W
wanghaoshuang 已提交
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
        tmp = tmp + [int(in_shapes[1]), int(in_shapes[2]), int(in_shapes[3])]
        # kernel size
        ksize = op.attr('ksize')
        tmp.append(int(ksize[0]))
        if ksize[0] != ksize[1]:
            res.append(int(ksize[1]))

        # padding
        paddings = op.attr('paddings')
        tmp.append(int(paddings[0]))
        if paddings[0] != paddings[1]:
            res.append(int(paddings[1]))

        # stride
        strides = op.attr('strides')
        tmp.append(int(strides[0]))
        if strides[0] != strides[1]:
            res.append(int(strides[1]))

        # ceil mode
        tmp.append(int(op.attr('ceil_mode')))

        # pool type
        pool_type = op.attr('pooling_type')
        exclusive = op.attr('exclusive')
        if pool_type == 'max' and (not exclusive):
            tmp.append(1)
        elif pool_type == 'avg' and (not exclusive):
            tmp.append(2)
        else:
            tmp.append(3)

        tmp = tmp + res
        return tmp

C
ceci3 已提交
204
    def _softmax_op_args(self, op):
W
wanghaoshuang 已提交
205 206 207 208 209 210 211
        # op name
        tmp = ['softmax']
        # axis
        tmp.append(op.attr('axis'))
        # batch size
        tmp.append(1)
        # input channels, height, width
C
ceci3 已提交
212
        in_shapes = op.inputs('X')[0].shape()
W
wanghaoshuang 已提交
213 214 215 216 217 218 219 220
        while len(in_shapes) < 4:
            in_shapes = in_shapes + (1, )

        for i in range(1, len(in_shapes)):
            tmp.append(int(in_shapes[i]))

        return tmp

C
ceci3 已提交
221
    def _fc_op_args(self, op):
W
wanghaoshuang 已提交
222 223 224 225 226 227 228 229 230 231
        # op name
        tmp = ['conv']
        # flag bias
        tmp.append(0)
        # flag relu
        tmp.append(0)
        # batch size 
        tmp.append(1)
        # input channels, height, width
        channels = 1
C
ceci3 已提交
232
        in_shape = op.inputs('X')[0].shape()
W
wanghaoshuang 已提交
233 234 235 236
        for i in range(1, len(in_shape)):
            channels *= in_shape[i]
        tmp = tmp + [int(channels), 1, 1]
        # output channels
C
ceci3 已提交
237
        tmp.append(int(op.outputs('Out')[0].shape()[1]))
W
wanghaoshuang 已提交
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
        # groups, kernel size, padding, stride, dilation
        tmp = tmp + [1, 1, 0, 1, 1]
        return tmp


class TableLatencyEvaluator(LatencyEvaluator):
    def __init__(self, table_file, delimiter=","):
        """
        The evaluator used to get graph's latency on some devices and infer engines.
        Args:
          - table_file(str): The path of file that records the devices latency of operators.
          - delimiter(str): The delimiter used in `table_file`.
        """
        self._table = self._load_table(table_file)
        self._delimiter = delimiter

    def _load_table(self, table_file):
        table = {}
        with open(table_file) as f:
            line = f.readline()
            self.infer_engine_name, self.device_name, self.create_time = line.strip(
            ).split("\t")
            for line in f:
                op_str, latency = line.strip().split("\t")
                table[op_str] = float(latency)
        return table

    def _op_latency(self, op_str):
        assert op_str in self._table
        return self._table[op_str]

C
ceci3 已提交
269
    def latency(self, graph, only_conv=True):
W
wanghaoshuang 已提交
270 271 272 273
        """
        Get latency of target graph.
        Args:
            - graph(GrapWrapper | Program): The graph to be evaluated.
C
ceci3 已提交
274
            - only_conv(bool): only evaluated convolution layer if `only_conv` is true. Default: True.
W
wanghaoshuang 已提交
275 276 277 278 279 280 281
        Returns:
            latency(float): The latency of given graph on current evaluator.
        """
        total_latency = 0
        if isinstance(graph, Program):
            graph = GraphWrapper(graph)
        assert isinstance(graph, GraphWrapper)
C
ceci3 已提交
282
        for op in self._get_ops_from_graph(graph, only_conv):
C
ceci3 已提交
283 284
            total_latency += self._op_latency(
                self._delimiter.join(map(lambda x: str(x), op)))
W
wanghaoshuang 已提交
285
        return total_latency