create_compressed_program.py 18.6 KB
Newer Older
C
ceci3 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2022  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
C
ceci3 已提交
16
import numpy as np
C
ceci3 已提交
17 18 19 20 21 22 23 24 25 26 27
import paddle
import paddle.distributed.fleet as fleet
import paddle.optimizer as optimizer
from ..quant.quanter import quant_aware, _quant_config_default, _parse_configs, pact, get_pact_optimizer
from ..dist import *
from ..common.recover_program import recover_inference_program, _remove_fetch_node
from ..common import get_logger
from .strategy_config import ProgramInfo

_logger = get_logger(__name__, level=logging.INFO)
__all__ = [
Z
zhouzj 已提交
28 29
    'build_distill_program', 'build_quant_program', 'build_prune_program',
    'remove_unused_var_nodes'
C
ceci3 已提交
30 31 32
]


33 34 35 36 37 38 39 40 41 42 43 44
def _create_lr_scheduler(train_config):
    if 'learning_rate' not in train_config:
        raise RuntimeError(
            'No `learning_rate` specified in the configuration file.')
    if isinstance(train_config.get('learning_rate'), float):
        return train_config.get('learning_rate')

    params = train_config.get('learning_rate')
    lr_type = params.pop('type')
    return getattr(optimizer.lr, lr_type)(**params)


C
ceci3 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
def _create_optimizer(train_config):
    """create optimizer"""
    opt = getattr(optimizer, train_config.get('optimizer') or
                  'SGD')  ### default optimizer is SGD
    if 'optim_args' in train_config:
        if train_config[
                'optim_args'] is not None and 'grad_clip' in train_config[
                    'optim_args'] and train_config['optim_args'][
                        'grad_clip'] is not None:
            grad_clip = getattr(
                paddle.nn, train_config['optim_args']['grad_clip'])(
                    **train_config['optim_args']['grad_clip_args'])
            train_config['optim_args'].pop('grad_clip')
            train_config['optim_args'].pop('grad_clip_args')
        else:
            grad_clip = None
            if 'grad_clip' in train_config['optim_args'] and train_config[
                    'optim_args']['grad_clip'] is None:
                train_config['optim_args'].pop('grad_clip')
                train_config['optim_args'].pop('grad_clip_args')
    else:
        train_config['optim_args'] = {}
        grad_clip = None

69 70
    lr = _create_lr_scheduler(train_config)
    op = opt(learning_rate=lr,
C
ceci3 已提交
71 72
             grad_clip=grad_clip,
             **train_config['optim_args'])
73
    return op, lr
C
ceci3 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113


def _parse_distill_loss(distill_node_pair,
                        distill_loss='l2_loss',
                        distill_lambda=1.0):
    """parse distill loss config"""
    loss_dist = 0.0
    losses = []
    if isinstance(distill_node_pair[0], str):
        assert isinstance(distill_loss, str)
        assert isinstance(distill_lambda, float)
        distill_node_pair = [distill_node_pair]
        distill_loss = [distill_loss]
        distill_lambda = [distill_lambda]

    assert len(distill_node_pair) == len(distill_loss)
    assert len(distill_node_pair) == len(distill_lambda)
    for node, loss, lam in zip(distill_node_pair, distill_loss, distill_lambda):
        tmp_loss = 0.0
        _logger.info("train config.distill_node_pair: {}".format(node, loss,
                                                                 lam))
        assert len(node) % 2 == 0, \
            "distill_node_pair config wrong, the length needs to be an even number"
        for i in range(len(node) // 2):
            tmp_loss += eval(loss)(node[i * 2], node[i * 2 + 1])
        loss_dist += lam * tmp_loss
        losses.append(tmp_loss)

    return loss_dist, losses


def _load_program_and_merge(executor,
                            place,
                            train_program,
                            config,
                            model_dir,
                            model_filename,
                            params_filename,
                            teacher_idx=None,
                            feed_target_names=None):
C
Chang Xu 已提交
114 115
    scope = paddle.static.global_scope()
    new_scope = paddle.static.Scope()
C
ceci3 已提交
116 117
    if params_filename == 'None':
        params_filename = None
C
ceci3 已提交
118
    try:
C
Chang Xu 已提交
119 120
        with paddle.static.scope_guard(new_scope):
            [teacher_program, teacher_feed_target_names, teacher_fetch_targets]= paddle.fluid.io.load_inference_model( \
C
ceci3 已提交
121 122 123 124
                dirname=model_dir, \
                model_filename=model_filename, \
                params_filename=params_filename, \
                executor=executor)
C
ceci3 已提交
125
    except:
C
Chang Xu 已提交
126 127
        with paddle.static.scope_guard(new_scope):
            [teacher_program, teacher_feed_target_names, teacher_fetch_targets]= paddle.static.load_inference_model( \
C
ceci3 已提交
128 129
                path_prefix=model_dir, \
                executor=executor)
C
ceci3 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153

    _remove_fetch_node(teacher_program)

    if teacher_idx == None or teacher_idx == 1:
        test_program = train_program.clone(for_test=True)

    data_name_map = {}

    if 'merge_feed' not in config or config['merge_feed'] == True:
        assert len(feed_target_names) == len(teacher_feed_target_names), \
            "the number of feed nodes in the teacher model is not equal to the student model"
        for i, name in enumerate(feed_target_names):
            data_name_map[teacher_feed_target_names[i]] = name

    if teacher_idx is None:
        teacher_name_prefix = 'teacher_'
    else:
        teacher_name_prefix = 'teacher{}_'.format(str(teacher_idx))

    merge(
        teacher_program,
        train_program,
        data_name_map,
        place,
C
Chang Xu 已提交
154
        teacher_scope=new_scope,
C
ceci3 已提交
155 156 157 158 159 160 161 162 163 164 165 166 167 168
        name_prefix=teacher_name_prefix,
        merge_feed=config.get('merge_feed') or True)
    if teacher_idx == None or teacher_idx == 1:
        return train_program, test_program, data_name_map
    else:
        return train_program, None, data_name_map


def build_distill_program(executor,
                          place,
                          config,
                          train_config,
                          train_program_info=None,
                          pruner=None,
C
ceci3 已提交
169 170
                          dist_strategy=None,
                          default_distill_node_pair=None):
C
ceci3 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
    """build distill program with infermodel"""
    startup_program = paddle.static.Program()
    if train_program_info is None:
        [train_program, feed_target_names, fetch_targets]= paddle.static.load_inference_model( \
            path_prefix=config["model_dir"] if "model_dir" in config else config["model_path_prefix"], \
            executor=executor)
        train_program = recover_inference_program(train_program)
    else:
        train_program = train_program_info.program
        feed_target_names = train_program_info.feed_target_names
        fetch_targets = train_program_info.fetch_targets

    teacher_model_dir = config[
        "teacher_model_dir"] if "teacher_model_dir" in config else config[
            "teacher_model_path_prefix"]
    if isinstance(teacher_model_dir, list):
        for tea_idx in range(len(teacher_model_dir)):
            model_filename = config["teacher_model_filename"][
                tea_idx] if "teacher_model_filename" in config else None
            params_filename = config["teacher_params_filename"][
                tea_idx] if "teacher_params_filename" in config else None
            if tea_idx == 0:
                train_program, test_program, data_name_map = _load_program_and_merge(
                    executor,
                    place,
                    train_program,
                    config,
                    teacher_model_dir[tea_idx],
                    model_filename,
                    params_filename,
                    teacher_idx=(tea_idx + 1),
                    feed_target_names=feed_target_names)
            else:
                train_program, _, data_name_map = _load_program_and_merge(
                    executor,
                    place,
                    train_program,
                    config,
                    teacher_model_dir[tea_idx],
                    model_filename,
                    params_filename,
                    teacher_idx=(tea_idx + 1),
                    feed_target_names=feed_target_names)

    else:
        model_filename = config[
            "teacher_model_filename"] if "teacher_model_filename" in config else None
        params_filename = config[
            "teacher_params_filename"] if "teacher_params_filename" in config else None
        train_program, test_program, data_name_map = _load_program_and_merge(
            executor,
            place,
            train_program,
            config,
            teacher_model_dir,
            model_filename,
            params_filename,
            teacher_idx=None,
            feed_target_names=feed_target_names)
    # all feed node should set stop_gradient is False, for using pact quant algo.
    for var in train_program.list_vars():
        if var.name in data_name_map.values() or var.name in data_name_map.keys(
        ):
            var.stop_gradient = False

    train_fetch_list = []
    with paddle.static.program_guard(train_program, startup_program):
        with paddle.utils.unique_name.guard('merge'):
239
            optimizer, learning_rate = _create_optimizer(train_config)
C
ceci3 已提交
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272

            if train_config.get('use_fleet'):
                optimizer = fleet.distributed_optimizer(optimizer,
                                                        dist_strategy)
            else:
                if train_config.get('amp_config') is not None:
                    custom_white_list = train_config['amp_config'].get(
                        'custom_white_list', None)
                    if custom_white_list is not None:
                        train_config['amp_config'].pop('custom_white_list')

                    custom_black_list = train_config['amp_config'].get(
                        'custom_black_list', None)
                    if custom_black_list is not None:
                        train_config['amp_config'].pop('custom_black_list')

                    custom_black_varnames = train_config['amp_config'].get(
                        'custom_black_varnames', None)
                    if custom_black_varnames is not None:
                        train_config['amp_config'].pop('custom_black_varnames')

                    amp_list = paddle.static.amp.CustomOpLists(
                        custom_white_list=custom_white_list,
                        custom_black_list=custom_black_list,
                        custom_black_varnames=custom_black_varnames)
                    optimizer = paddle.static.amp.decorate(
                        optimizer=optimizer,
                        amp_lists=amp_list,
                        init_loss_scaling=128.0,
                        use_dynamic_loss_scaling=True,
                        **train_config['amp_config'])

            distill_loss, losses = _parse_distill_loss(
C
ceci3 已提交
273
                config.get('distill_node_pair') or default_distill_node_pair,
C
ceci3 已提交
274 275 276 277 278 279 280
                config.get('distill_loss') or
                'l2_loss',  ### default loss is l2_loss
                config.get('distill_lambda') or 1.0)  ### default lambda is 1.0
            loss = paddle.mean(distill_loss)
            loss.stop_gradient = False

            if 'prune_algo' in config:  ### prune & asp
281 282
                if config['prune_algo'] == 'asp' and not train_config.get(
                        'use_fleet'):
C
ceci3 已提交
283 284 285 286 287 288 289 290 291 292 293
                    optimizer = pruner.decorate(optimizer)
                optimizer.minimize(loss)
            elif 'prune_strategy' in config:  ###unstructure prune
                optimizer.minimize(loss, no_grad_set=pruner.no_grad_set)
            else:
                optimizer.minimize(loss)

            train_fetch_list.append(loss)

    train_program_info = ProgramInfo(startup_program, train_program,
                                     feed_target_names, train_fetch_list,
294
                                     optimizer, learning_rate)
C
ceci3 已提交
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
    test_program_info = ProgramInfo(startup_program, test_program,
                                    feed_target_names, fetch_targets)
    return train_program_info, test_program_info


def build_quant_program(executor, place, config, train_program_info,
                        test_program_info):
    scope = paddle.static.global_scope()

    assert isinstance(config, dict), "quant config must be dict"
    default_config = _quant_config_default
    default_config.update(config)
    config = _parse_configs(default_config)

    use_pact = config["use_pact"]
    if use_pact:
        act_preprocess_func = pact
        optimizer_func = get_pact_optimizer
        pact_executor = executor
    else:
        act_preprocess_func = None
        optimizer_func = None
        pact_executor = None

    test_program = quant_aware(
        test_program_info.program,
        place,
        config,
        scope=scope,
        act_preprocess_func=None,
        optimizer_func=None,
        executor=None,
        for_test=True)

    train_program = quant_aware(
        train_program_info.program,
        place,
        config,
        scope=scope,
        act_preprocess_func=act_preprocess_func,
        optimizer_func=optimizer_func,
        executor=pact_executor,
        for_test=False,
        return_program=True)

    train_program_info.program = train_program
    test_program_info.program = test_program
    return train_program_info, test_program_info, config


C
ceci3 已提交
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
def _get_label_info(dataloader, feed_target_names):
    label_info = {}
    for data in dataloader():
        for key, value in data[0].items():
            if key in feed_target_names:
                continue
            label_info['name'] = key
            label_info['dtype'] = np.array(value).dtype
            label_info['shape'] = list(np.array(value).shape)
            label_info['shape'][0] = -1
            break
        break
    return label_info


def build_prune_program(executor,
                        place,
                        config,
                        train_program_info,
                        strategy,
                        patterns,
                        eval_dataloader=None):
C
ceci3 已提交
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
    if 'unstructure' in strategy:
        from ..prune.unstructured_pruner import UnstructuredPruner, GMPUnstructuredPruner
        if config["prune_strategy"] is None:
            pruner = UnstructuredPruner(
                train_program_info.program,
                mode=config['prune_mode'],
                ratio=config['pruned_ratio'],
                threshold=config['threshold'],
                prune_params_type=config['prune_params_type'],
                place=place,
                local_sparsity=config['local_sparsity'], )
        elif config["prune_strategy"] == "gmp":
            pruner = GMPUnstructuredPruner(
                train_program_info.program,
                ratio=config['pruned_ratio'],
                prune_params_type=config['prune_params_type'],
                place=place,
                local_sparsity=config['local_sparsity'],
C
ceci3 已提交
385
                configs=config['gmp_config'])
C
ceci3 已提交
386 387 388 389 390
    else:
        if config['prune_algo'] == 'prune':
            from ..prune import Pruner
            pruner = Pruner(config["criterion"])
            params = []
C
ceci3 已提交
391
            ### TODO(ceci3): set default prune weight
C
ceci3 已提交
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
            for param in train_program_info.program.global_block(
            ).all_parameters():
                if config[
                        'prune_params_name'] is not None and param.name in config[
                            'prune_params_name']:
                    params.append(param.name)

            pruned_program, _, _ = pruner.prune(
                train_program_info.program,
                paddle.static.global_scope(),
                params=params,
                ratios=[config['pruned_ratio']] * len(params),
                place=place)
            train_program_info.program = pruned_program

        elif config['prune_algo'] == 'asp':
            from paddle.static import sparsity
            pruner = sparsity
            excluded_params_name = []
C
ceci3 已提交
411
            ### TODO(ceci3): set default prune weight
C
ceci3 已提交
412 413 414 415 416 417
            for param in train_program_info.program.global_block(
            ).all_parameters():
                if config[
                        'prune_params_name'] is not None and param.name not in config[
                            'prune_params_name']:
                    excluded_params_name.append(param.name)
418 419
                if "teacher_" in param.name:
                    excluded_params_name.append(param.name)
C
ceci3 已提交
420 421
            pruner.set_excluded_layers(train_program_info.program,
                                       excluded_params_name)
C
ceci3 已提交
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
        elif config['prune_algo'] == 'transformer_pruner':
            from .transformer_pruner import TransformerPruner
            assert eval_dataloader is not None, "transformer_pruner must set eval_dataloader"
            label_info = _get_label_info(eval_dataloader,
                                         train_program_info.feed_target_names)
            assert len(label_info) != 0, \
                "maybe something wrong in get label name from eval_dataloader, please check your eval_dataloader"
            pruner = TransformerPruner(
                executor,
                place,
                train_program_info.program,
                patterns,
                label_info,
                width_mult=(1.0 - config['pruned_ratio']),
                dataloader=eval_dataloader,
                fetch_targets=train_program_info.fetch_targets)
            pruned_program = pruner.prune()
            train_program_info.program = pruned_program
C
ceci3 已提交
440 441 442 443 444 445
        else:
            raise NotImplementedError(
                "prune_algo must be choice in [\"prune\", \"asp\"], {} is not support".
                format(config['prune_algo']))

    return pruner, train_program_info
Z
zhouzj 已提交
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467


def remove_unused_var_nodes(program):
    '''
    This function is called before saving the sparse model to remove redundant nodes.
    Args:
        program(paddle.static.Program): The sparse model to be saved.
    Returns:
        program(paddle.static.Program): The sparse model.
    '''
    from paddle.fluid import core
    from paddle.fluid.framework import IrGraph
    graph = IrGraph(core.Graph(program.desc), for_test=True)
    removed_nodes = set()
    ops = graph.all_op_nodes()
    for op_node in ops:
        for input_node in op_node.inputs:
            if '_mask' in input_node.name():
                removed_nodes.add(op_node)
    graph.safe_remove_nodes(removed_nodes)
    program = graph.to_program()
    return program