kl.py 6.0 KB
Newer Older
W
whs 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import math

from .base_hist import BaseHistObserver
from paddle.quantization.factory import ObserverFactory


class KLObserver(ObserverFactory):
    r""" 
    Calculate quantization parameters that minimize the Kullback–Leibler divergence
    between the distribution of floating values and the distribution of quantized
    floating values.

    Args:
        quant_bits (int): The number of bits for quantization.
        bins_count(int): The number of equal-width bins.

    Examples:
       .. code-block:: python

            from paddle.quantization import QuantConfig
            from paddle.quantization.quanters import KLObserver
            quanter = KLObserver()
            q_config = QuantConfig(activation=quanter, weight=quanter)
    """

    def __init__(self, quant_bits=8, bins_count=2048):
        super(KLObserver, self).__init__(
            quant_bits=quant_bits, bins_count=bins_count)

    def _get_class(self):
        return KLObserverLayer


class KLObserverLayer(BaseHistObserver):
    """
    Per-tensor KL observer.
    """

    def __init__(self, layer, quant_bits=8, bins_count=2048):
        super(KLObserverLayer, self).__init__(
            quant_bits=quant_bits,
            bins_count=bins_count,
            sign=True,
            symmetric=True)

    def _search_min_max_by_kl(self):
        bin_width = (self._hist_max - self._hist_min) / self._bin_count
        _max = cal_kl_threshold(self._hist, bin_width, self.bit_length())
        return 0., _max

    def cal_min_max(self):
        return self._search_min_max_by_kl()


def expand_quantized_bins(quantized_bins, reference_bins):
    '''
    Expand hist bins.
    '''
    expanded_quantized_bins = [0] * len(reference_bins)
    num_merged_bins = int(len(reference_bins) / len(quantized_bins))
    j_start = 0
    j_end = num_merged_bins
    for idx in range(len(quantized_bins)):
        zero_count = reference_bins[j_start:j_end].count(0)
        num_merged_bins = j_end - j_start
        if zero_count == num_merged_bins:
            avg_bin_ele = 0
        else:
            avg_bin_ele = quantized_bins[idx] / (
                num_merged_bins - zero_count + 0.0)
        for idx1 in range(j_start, j_end):
            expanded_quantized_bins[idx1] = (0 if reference_bins[idx1] == 0 else
                                             avg_bin_ele)
        j_start += num_merged_bins
        j_end += num_merged_bins
        if (idx + 1) == len(quantized_bins) - 1:
            j_end = len(reference_bins)
    return expanded_quantized_bins


def safe_entropy(reference_distr_P, P_sum, candidate_distr_Q, Q_sum):
    '''
    Calculate the entropy.
    '''
    assert len(reference_distr_P) == len(candidate_distr_Q)
    tmp_sum1 = 0
    tmp_sum2 = 0
    for idx in range(len(reference_distr_P)):
        p_idx = reference_distr_P[idx]
        q_idx = candidate_distr_Q[idx]
        if p_idx == 0:
            tmp_sum1 += 0
            tmp_sum2 += 0
        else:
            if q_idx == 0:
                _logger.error("Fatal error!, idx = " + str(idx) +
                              " qindex = 0! p_idx = " + str(p_idx))
            tmp_sum1 += p_idx * (math.log(Q_sum * p_idx))
            tmp_sum2 += p_idx * (math.log(P_sum * q_idx))
    return (tmp_sum1 - tmp_sum2) / P_sum


def cal_kl_threshold(hist, bin_width, bits):
    '''
    Using the KL-divergenc method to get the more precise threshold.

    Args:
        hist(List): The hist of the tensor.
        bin_width(float): The bin width for the hist.
        bits(int): The quantization bits.
    '''
    assert hist.ndim == 1
    hist_bins = hist.shape[0]
    starting_iter = int((hist_bins - 1) * 0.5)
    quant_range = 2**(bits - 1) - 1

    P_sum = np.sum(np.array(hist).ravel())
    min_kl_divergence = 0
    min_kl_index = 0
    kl_inited = False

    for i in range(starting_iter, hist_bins):
        reference_distr_P = hist[0:i].tolist()
        outliers_count = sum(hist[i:])
        if reference_distr_P[i - 1] == 0:
            continue
        reference_distr_P[i - 1] += outliers_count
        reference_distr_bins = reference_distr_P[:]
        candidate_distr_Q = hist[0:i].tolist()
        num_merged_bins = int(i / quant_range)
        candidate_distr_Q_quantized = [0] * quant_range
        j_start = 0
        j_end = num_merged_bins
        for idx in range(quant_range):
            candidate_distr_Q_quantized[idx] = sum(
                candidate_distr_Q[j_start:j_end])
            j_start += num_merged_bins
            j_end += num_merged_bins
            if (idx + 1) == quant_range - 1:
                j_end = i
        candidate_distr_Q = expand_quantized_bins(candidate_distr_Q_quantized,
                                                  reference_distr_bins)
        Q_sum = sum(candidate_distr_Q)
        kl_divergence = safe_entropy(reference_distr_P, P_sum,
                                     candidate_distr_Q, Q_sum)
        if not kl_inited:
            min_kl_divergence = kl_divergence
            min_kl_index = i
            kl_inited = True
        elif kl_divergence < min_kl_divergence:
            min_kl_divergence = kl_divergence
            min_kl_index = i
        else:
            pass
    if min_kl_index == 0:
        while starting_iter > 0:
            if hist[starting_iter] == 0:
                starting_iter -= 1
                continue
            else:
                break
        min_kl_index = starting_iter
    return (min_kl_index + 0.5) * bin_width