base_hist.py 7.6 KB
Newer Older
W
whs 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import abc
from typing import Tuple
import paddle
import numpy as np

from .uniform import UniformObserver


class BaseHistObserver(UniformObserver):
    """
    It is a base class of histogram observers defined some functions to
    collects the values of multi batches to a histogram.
    Args:
        quant_bits (int): The number of bits for quantization.
        sign (bool): Whether the quantized integer includes a sign.
        symmetric (bool): Whether it is symmetric quantization. the quantization is symmetric.
        In symmetric quantization, the range of floating point values is relaxed to be symmetric
        around zero and the zero-point is always 0.
        bins_count(int): The number of equal-width bins.
    """

    def __init__(self, quant_bits=8, bins_count=2048, sign=True,
                 symmetric=True):
        super(BaseHistObserver, self).__init__(
            quant_bits=quant_bits,
            sign=sign,
            symmetric=symmetric, )
        self._bin_count = bins_count
        self._upsample_bin_count = 64

        self._hist_min = None
        self._hist_max = None
        self._hist = None

    def _min_max(self, tensor):
        """" Get the min and max value of a tensor.
        """
        return float(paddle.min(tensor).numpy()), float(
            paddle.max(tensor).numpy())

    def _init_hists(self, inputs):
        """" Initialize the histogram instance based on a tensor.
        """
        _min, _max = self._min_max(inputs)
        hist = None
        if _max > _min:
            hist, _ = np.histogram(
                inputs.numpy(), range=(_min, _max), bins=self._bin_count)
            hist.astype(np.float32)
        return hist

    def forward(self, inputs):
        self._scale = None
        self._zero_point = None
        self._min = None
        self._max = None

        if self._hist_min is None or self._hist_max is None:
            self._hist_min, self._hist_max = self._min_max(inputs)
            self._hist = self._init_hists(inputs)
        else:
            new_min, new_max, new_hist = self._update_min_max_and_hist(
                inputs,
                self._hist_min,
                self._hist_max,
                self._hist,
                self._bin_count,
                self._upsample_bin_count, )
            self._hist_min, self._hist_max = new_min, new_max
            self._hist = new_hist
        return inputs

    def _update_min_max_and_hist(self, tensor, origin_min, origin_max,
                                 origin_hist, bins_count, upsample_bins_count):
        """ Update the histogram and its range based on the values of the target tensor.
        Args:
            tensor: The tensor used to update the histogram.
            origin_min(float): The minimum of the original histogram's range.
            origin_max(float): The max of the original histogram's range.
            origin_hist: The original histogram.
            bins_count(int): The number of histogram bins.
            upsample_bins_count(int): The number of upsampled bins used to extend the histogram.
        """

        _origin_min, _origin_max = origin_min, origin_max
        _new_min, _new_max = self._min_max(tensor)

        if (_new_max - _new_min) == 0.0:
            return _origin_min, _origin_max, origin_hist
        elif _origin_max - _origin_min == 0.0:
            new_hist, _ = np.histogram(
                tensor.numpy(), range=(_new_min, _new_max), bins=bins_count)
            new_hist = new_hist.astype(np.float32)
            return _new_min, _new_max, new_hist
        elif _new_max <= _origin_max and _new_min >= _origin_min:
            new_hist, _ = np.histogram(
                tensor.numpy(),
                range=(_origin_min, _origin_max),
                bins=bins_count)
            new_hist = new_hist.astype(np.float32)
            new_hist += origin_hist
            return _origin_min, _origin_max, new_hist
        else:
            _new_min = min(_new_min, _origin_min)
            _new_max = max(_new_max, _origin_max)
            _new_min, _new_max, downsample_bins_count, start_bin_idx = self._relax_min_max(
                _new_min, _new_max, _origin_min, _origin_max, bins_count,
                upsample_bins_count)

            new_hist, _ = np.histogram(
                tensor.numpy(), range=(_new_min, _new_max), bins=bins_count)

            merged_histogram = self._merge_histograms(
                new_hist, origin_hist, upsample_bins_count,
                downsample_bins_count, start_bin_idx, bins_count)
            return _new_min, _new_max, merged_histogram

    def _merge_histograms(
            self,
            new_hist: np.ndarray,
            origin_hist: np.ndarray,
            upsample_bins_count: int,
            downsample_bins_count: int,
            start_bin_idx: int,
            bins_count: int, ):
        upsampled_histogram = np.repeat(origin_hist, upsample_bins_count)
        expanded_hist = np.zeros(
            (bins_count * downsample_bins_count), dtype=np.float32)
        expanded_hist[start_bin_idx:bins_count * upsample_bins_count +
                      start_bin_idx] = upsampled_histogram

        cumsumed_hist = np.cumsum(
            expanded_hist,
            dtype=np.float64)[downsample_bins_count - 1::downsample_bins_count]
        shift_cumsumed_hist = np.zeros((bins_count), dtype=np.float64)
        shift_cumsumed_hist[1:] = cumsumed_hist[0:-1]
        sampled_hist = (
            cumsumed_hist - shift_cumsumed_hist) / upsample_bins_count
        new_hist = new_hist.astype(np.float32)
        new_hist += sampled_hist.astype(np.float32)
        return new_hist

    def _relax_min_max(self, new_min, new_max, origin_min, origin_max,
                       bins_count,
                       upsample_bins_count) -> Tuple[float, float, int, int]:
        _bin_width = (origin_max - origin_min) / (
            bins_count * upsample_bins_count)
        downsample_bins_count = int(
            np.ceil((new_max - new_min) / (bins_count * _bin_width)))
        error = downsample_bins_count * bins_count * _bin_width - (
            new_max - new_min)
        new_max += error
        start_bin_idx = round((origin_min - new_min) / _bin_width)
        return new_min, new_max, downsample_bins_count, start_bin_idx

    @abc.abstractmethod
    def cal_min_max(self) -> Tuple[float, float]:
        """ Calculate the minimum and maximum based on the histogram. """
        raise NotImplementedError("Please implement the abstract method.")

    def cal_thresholds(self):
        assert self._hist is not None
        self._min, self._max = self.cal_min_max()
        self._scale, self._zero_point = self.cal_scales_zero_points()

    def min_value(self) -> float:
        return self._min

    def max_value(self) -> float:
        return self._max

    def bit_length(self):
        return self._quant_bits

    def quant_axis(self):
        return -1

    def scales(self):
        if self._scale is None:
            self.cal_thresholds()
        return self._scale

    def zero_points(self):
        if self._zero_point is None:
            self.cal_thresholds()
        return self._zero_point