get_sub_model.py 8.9 KB
Newer Older
C
ceci3 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import paddle
C
ceci3 已提交
17
from paddle.fluid import core
18
from .layers_base import BaseBlock
C
ceci3 已提交
19

20 21
__all__ = ['get_prune_params_config', 'prune_params', 'check_search_space']

22 23 24
WEIGHT_OP = [
    'conv2d', 'linear', 'embedding', 'conv2d_transpose', 'depthwise_conv2d'
]
25 26 27 28
CONV_TYPES = [
    'conv2d', 'conv3d', 'conv1d', 'superconv2d', 'supergroupconv2d',
    'superdepthwiseconv2d'
]
C
ceci3 已提交
29 30 31


def get_prune_params_config(graph, origin_model_config):
32 33
    """ Convert config of search space to parameters' prune config.
    """
C
ceci3 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
    param_config = {}
    precedor = None
    for op in graph.ops():
        ### TODO(ceci3):
        ### 1. fix config when this op is concat by graph.pre_ops(op)
        ### 2. add kernel_size in config
        ### 3. add channel in config
        for inp in op.all_inputs():
            n_ops = graph.next_ops(op)
            if inp._var.name in origin_model_config.keys():
                if 'expand_ratio' in origin_model_config[inp._var.name].keys():
                    tmp = origin_model_config[inp._var.name]['expand_ratio']
                    if len(inp._var.shape) > 1:
                        if inp._var.name in param_config.keys():
                            param_config[inp._var.name].append(tmp)
                        ### first op
                        else:
                            param_config[inp._var.name] = [precedor, tmp]
                    else:
                        param_config[inp._var.name] = [tmp]
                    precedor = tmp
                else:
                    precedor = None
            for n_op in n_ops:
                for next_inp in n_op.all_inputs():
                    if next_inp._var.persistable == True:
                        if next_inp._var.name in origin_model_config.keys():
                            if 'expand_ratio' in origin_model_config[
                                    next_inp._var.name].keys():
                                tmp = origin_model_config[next_inp._var.name][
                                    'expand_ratio']
                                pre = tmp if precedor is None else precedor
                                if len(next_inp._var.shape) > 1:
                                    param_config[next_inp._var.name] = [pre]
                                else:
                                    param_config[next_inp._var.name] = [tmp]
                            else:
                                if len(next_inp._var.
                                       shape) > 1 and precedor != None:
                                    param_config[
                                        next_inp._var.name] = [precedor, None]
                        else:
                            param_config[next_inp._var.name] = [precedor]

    return param_config


def prune_params(model, param_config, super_model_sd=None):
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
    """ Prune parameters according to the config.

        Parameters:
            model(paddle.nn.Layer): instance of model.
            param_config(dict): prune config of each weight.
            super_model_sd(dict, optional): parameters come from supernet. If super_model_sd is not None, transfer parameters from this dict to model; otherwise, prune model from itself.
    """
    for l_name, sublayer in model.named_sublayers():
        if isinstance(sublayer, BaseBlock):
            continue
        for p_name, param in sublayer.named_parameters(include_sublayers=False):
            t_value = param.value().get_tensor()
            value = np.array(t_value).astype("float32")

            if super_model_sd != None:
                name = l_name + '.' + p_name
                super_t_value = super_model_sd[name].value().get_tensor()
                super_value = np.array(super_t_value).astype("float32")
100
                super_model_sd.pop(name)
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128

            if param.name in param_config.keys():
                if len(param_config[param.name]) > 1:
                    in_exp = param_config[param.name][0]
                    out_exp = param_config[param.name][1]
                    if sublayer.__class__.__name__.lower() in CONV_TYPES:
                        in_chn = int(value.shape[1]) if in_exp == None else int(
                            value.shape[1] * in_exp)
                        out_chn = int(value.shape[
                            0]) if out_exp == None else int(value.shape[0] *
                                                            out_exp)
                        prune_value = super_value[:out_chn, :in_chn, ...] \
                                         if super_model_sd != None else value[:out_chn, :in_chn, ...]
                    else:
                        in_chn = int(value.shape[0]) if in_exp == None else int(
                            value.shape[0] * in_exp)
                        out_chn = int(value.shape[
                            1]) if out_exp == None else int(value.shape[1] *
                                                            out_exp)
                        prune_value = super_value[:in_chn, :out_chn, ...] \
                                         if super_model_sd != None else value[:in_chn, :out_chn, ...]
                else:
                    out_chn = int(value.shape[0]) if param_config[param.name][
                        0] == None else int(value.shape[0] *
                                            param_config[param.name][0])
                    prune_value = super_value[:out_chn, ...] \
                                     if super_model_sd != None else value[:out_chn, ...]

C
ceci3 已提交
129
            else:
130 131 132 133 134 135 136 137 138 139 140 141 142
                prune_value = super_value if super_model_sd != None else value

            p = t_value._place()
            if p.is_cpu_place():
                place = core.CPUPlace()
            elif p.is_cuda_pinned_place():
                place = core.CUDAPinnedPlace()
            else:
                place = core.CUDAPlace(p.gpu_device_id())
            t_value.set(prune_value, place)
            if param.trainable:
                param.clear_gradient()

143 144 145 146 147
    ### initialize param which not in sublayers, such as create persistable inputs by create_parameters 
    if super_model_sd != None and len(super_model_sd) != 0:
        for k, v in super_model_sd.items():
            setattr(model, k, v)

148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208

def _find_weight_ops(op, graph, weights):
    """ Find the vars come from operators with weight.
    """
    pre_ops = graph.pre_ops(op)
    for pre_op in pre_ops:
        if pre_op.type() in WEIGHT_OP:
            for inp in pre_op.all_inputs():
                if inp._var.persistable:
                    weights.append(inp._var.name)
            return weights
        return _find_weight_ops(pre_op, graph, weights)


def _find_pre_elementwise_add(op, graph):
    """ Find precedors of the elementwise_add operator in the model.
    """
    same_prune_before_elementwise_add = []
    pre_ops = graph.pre_ops(op)
    for pre_op in pre_ops:
        if pre_op.type() in WEIGHT_OP:
            return
        same_prune_before_elementwise_add = _find_weight_ops(
            pre_op, graph, same_prune_before_elementwise_add)
    return same_prune_before_elementwise_add


def check_search_space(graph):
    """ Find the shortcut in the model and set same config for this situation.
    """
    same_search_space = []
    for op in graph.ops():
        if op.type() == 'elementwise_add':
            inp1, inp2 = op.all_inputs()[0], op.all_inputs()[1]
            if (not inp1._var.persistable) and (not inp2._var.persistable):
                pre_ele_op = _find_pre_elementwise_add(op, graph)
                if pre_ele_op != None:
                    same_search_space.append(pre_ele_op)

    if len(same_search_space) == 0:
        return None

    same_search_space = sorted([sorted(x) for x in same_search_space])
    final_search_space = []

    if len(same_search_space) >= 1:
        final_search_space = [same_search_space[0]]
        if len(same_search_space) > 1:
            for l in same_search_space[1:]:
                listset = set(l)
                merged = False
                for idx in range(len(final_search_space)):
                    rset = set(final_search_space[idx])
                    if len(listset & rset) != 0:
                        final_search_space[idx] = list(listset | rset)
                        merged = True
                        break
                if not merged:
                    final_search_space.append(l)

    return final_search_space