resnet_cifar.py 6.4 KB
Newer Older
R
rehulisw 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
import numpy as np


class LambdaLayer(nn.Layer):
    def __init__(self, lambd):
        super(LambdaLayer, self).__init__()
        self.lambd = lambd

    def forward(self, x):
        return self.lambd(x)


class BasicBlock(nn.Layer):
    expansion = 1

    def __init__(self, in_planes, planes, stride=1, norm_layer=None):
        super(BasicBlock, self).__init__()
        if norm_layer is None:
            norm_layer = nn.BatchNorm2D

        self.conv1 = nn.Conv2D(in_planes, planes, 3, padding=1, stride=stride, bias_attr=False)
        self.bn1 = norm_layer(planes)
        self.relu = nn.ReLU()

        self.conv2 = nn.Conv2D(planes, planes, 3, padding=1, bias_attr=False)
        self.bn2 = norm_layer(planes)
        self.downsample = nn.Sequential()
        self.stride = stride

        self.in_planes = in_planes
        self.planes = planes

    def forward(self, x):
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.stride != 1 or self.planes != self.in_planes:
            if self.stride != 1:
                self.downsample = LambdaLayer(
                    lambda x: F.pad(x[:, :, ::2, ::2],
                                    (0, 0, (self.planes-self.in_planes)//2, self.planes-self.in_planes-(self.planes-self.in_planes)//2,
                                    0, 0, 0, 0), "constant", 0))
            else:
                self.downsample = LambdaLayer(
                    lambda x: F.pad(x[:, :, :, :],
                                    (0, 0, (self.planes-self.in_planes) // 2,
                                     self.planes-self.in_planes-(self.planes-self.in_planes)//2, 0, 0, 0, 0), "constant", 0))


        identity = self.downsample(identity)

        out += identity
        out = self.relu(out)

        return out


class ResNetCifar(nn.Layer):
    def __init__(self, depth=20, num_classes=10, cfg=None, cutout=False):
        super(ResNetCifar, self).__init__()
        cfg_base = []
        n = (depth-2) // 6

        for i in [16, 32, 64]:
            for j in range(n):
                cfg_base.append(i)

        if cfg is None:
            cfg = cfg_base

        num_blocks = []
        if depth == 20:
            num_blocks = [3, 3, 3]

        block = BasicBlock

        self.cfg_base = cfg_base
        self.num_classes = num_classes
        self.num_blocks = num_blocks
        self.cutout = cutout
        self.cfg = cfg
        self.in_planes = 16

        conv1 = nn.Conv2D(3, 16, kernel_size=3, stride=1, padding=1, bias_attr=False)
        bn1 = nn.BatchNorm2D(16)
        self.conv_bn = nn.Sequential(conv1, bn1)

        self.layer1 = self._make_layer(block, cfg[0:n], num_blocks[0], stride=1)
        self.layer2 = self._make_layer(block, cfg[n:2*n], num_blocks[1], stride=2)
        self.layer3 = self._make_layer(block, cfg[2*n:], num_blocks[2], stride=2)

        self.pool = nn.AdaptiveAvgPool2D(1)
        self.linear = nn.Linear(cfg[-1], num_classes)

    def _make_layer(self, block, planes, num_blocks, stride):
        strides = [stride] + [1] * (num_blocks - 1)
        layers = []
        for i in range(len(strides)):
            layers.append(('block_%d' % i, block(self.in_planes, planes[i], strides[i])))
            self.in_planes = planes[i]
        return nn.Sequential(*layers)

    def forward(self, x):
        out = F.relu(self.conv_bn(x))
        out = self.layer1(out)
        out = self.layer2(out)
        out = self.layer3(out)
        out = self.pool(out).flatten(1)
        out = self.linear(out)

        return out

    def feature_extract(self, x):
        tensor = []
        out = F.relu(self.conv_bn(x))
        for i in [self.layer1, self.layer2, self.layer3]:
            for _layer in i:
                out = _layer(out)
                if type(_layer) is BasicBlock:
                    tensor.append(out)

        return tensor

    def cfg2flops(self, cfg):  # to simplify, only count convolution flops
        size = 32
        flops = 0
        flops += (3 * 3 * 3 * 16 * 32 * 32 + 16 * 32 * 32 * 4) # conv1+bn1
        in_c = 16
        cfg_idx = 0
        for i in range(3):
            num_blocks = self.num_blocks[i]
            if i==1 or i==2:
                size = size // 2
            for j in range(num_blocks):
                c = cfg[cfg_idx]
                flops += (in_c * 3 * 3 * c * size * size + c * size * size * 4 + c * 3 * 3 * c * size * size + c * size * size * 4) # per block flops
                if in_c != c:
                    flops += in_c * c * size * size # shortcut
                in_c = c
                cfg_idx += 1
        flops += (2 * self.cfg[-1] + 1) * self.num_classes # fc layer
        return flops

    def cfg2flops_perlayer(self, cfg, length):  # to simplify, only count convolution flops
        size = 32
        flops_singlecfg = [0 for j in range(length)]
        flops_doublecfg = np.zeros((length, length))
        flops_squarecfg = [0 for j in range(length)]

        in_c = 16
        cfg_idx = 0
        for i in range(3):
            num_blocks = self.num_blocks[i]
            if i==1 or i==2:
                size = size // 2
            for j in range(num_blocks):
                c = cfg[cfg_idx]
                if i==0 and j==0:
                    flops_singlecfg[cfg_idx] += (c * size * size * 4 + c * size * size * 4 + in_c * 3 * 3 * c * size * size)
                    flops_squarecfg[cfg_idx] += c * 3 * 3 * c * size * size
                else:
                    flops_singlecfg[cfg_idx] += (c * size * size * 4 + c * size * size * 4)
                    flops_doublecfg[cfg_idx-1][cfg_idx] += in_c * 3 * 3 * c * size * size
                    flops_doublecfg[cfg_idx][cfg_idx-1] += in_c * 3 * 3 * c * size * size
                    flops_squarecfg[cfg_idx] += (c * 3 * 3 * c * size * size )
                if in_c != c:
                    flops_doublecfg[cfg_idx][cfg_idx-1] += in_c * c * size * size # shortcut
                    flops_doublecfg[cfg_idx-1][cfg_idx] += in_c * c * size * size
                in_c = c
                cfg_idx += 1

        flops_singlecfg[-1] += 2 * self.cfg[-1] * self.num_classes # fc layer
        return flops_singlecfg, flops_doublecfg, flops_squarecfg