run.py 5.9 KB
Newer Older
Z
zhouzj 已提交
1 2 3 4 5
import os
import argparse
import random
import paddle
import numpy as np
W
whs 已提交
6
from paddleseg.cvlibs import Config as PaddleSegDataConfig
Z
zhouzj 已提交
7
from paddleseg.utils import worker_init_fn
W
whs 已提交
8

Z
zhouzj 已提交
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
from paddleslim.auto_compression import AutoCompression
from paddleseg.core.infer import reverse_transform
from paddleseg.utils import metrics


def parse_args():
    parser = argparse.ArgumentParser(description='Model training')
    parser.add_argument(
        '--model_dir',
        type=str,
        default=None,
        help="inference model directory.")
    parser.add_argument(
        '--model_filename',
        type=str,
        default=None,
        help="inference model filename.")
    parser.add_argument(
        '--params_filename',
        type=str,
        default=None,
        help="inference params filename.")
    parser.add_argument(
        '--save_dir',
        type=str,
        default=None,
        help="directory to save compressed model.")
    parser.add_argument(
W
whs 已提交
37
        '--strategy_config',
Z
zhouzj 已提交
38 39 40
        type=str,
        default=None,
        help="path of compression strategy config.")
W
whs 已提交
41 42 43 44 45
    parser.add_argument(
        '--dataset_config',
        type=str,
        default=None,
        help="path of dataset config.")
Z
zhouzj 已提交
46 47 48 49 50
    parser.add_argument(
        '--deploy_hardware',
        type=str,
        default=None,
        help="The hardware you want to deploy.")
Z
zhouzj 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
    return parser.parse_args()


def eval_function(exe, compiled_test_program, test_feed_names, test_fetch_list):

    nranks = paddle.distributed.ParallelEnv().local_rank

    batch_sampler = paddle.io.DistributedBatchSampler(
        eval_dataset, batch_size=1, shuffle=False, drop_last=False)
    loader = paddle.io.DataLoader(
        eval_dataset,
        batch_sampler=batch_sampler,
        num_workers=1,
        return_list=True, )

    total_iters = len(loader)
    intersect_area_all = 0
    pred_area_all = 0
    label_area_all = 0

    print("Start evaluating (total_samples: {}, total_iters: {})...".format(
        len(eval_dataset), total_iters))

    for iter, (image, label) in enumerate(loader):
        paddle.enable_static()

        label = np.array(label).astype('int64')
        ori_shape = np.array(label).shape[-2:]

        image = np.array(image)
        logits = exe.run(compiled_test_program,
                         feed={test_feed_names[0]: image},
                         fetch_list=test_fetch_list,
                         return_numpy=True)

        paddle.disable_static()
        logit = logits[0]

        logit = reverse_transform(
            paddle.to_tensor(logit),
            ori_shape,
            eval_dataset.transforms.transforms,
            mode='bilinear')

        pred = paddle.argmax(
            paddle.to_tensor(logit), axis=1, keepdim=True, dtype='int32')

        intersect_area, pred_area, label_area = metrics.calculate_area(
            pred,
            paddle.to_tensor(label),
            eval_dataset.num_classes,
            ignore_index=eval_dataset.ignore_index)

        if nranks > 1:
            intersect_area_list = []
            pred_area_list = []
            label_area_list = []
            paddle.distributed.all_gather(intersect_area_list, intersect_area)
            paddle.distributed.all_gather(pred_area_list, pred_area)
            paddle.distributed.all_gather(label_area_list, label_area)

            # Some image has been evaluated and should be eliminated in last iter
            if (iter + 1) * nranks > len(eval_dataset):
                valid = len(eval_dataset) - iter * nranks
                intersect_area_list = intersect_area_list[:valid]
                pred_area_list = pred_area_list[:valid]
                label_area_list = label_area_list[:valid]

            for i in range(len(intersect_area_list)):
                intersect_area_all = intersect_area_all + intersect_area_list[i]
                pred_area_all = pred_area_all + pred_area_list[i]
                label_area_all = label_area_all + label_area_list[i]
        else:
            intersect_area_all = intersect_area_all + intersect_area
            pred_area_all = pred_area_all + pred_area
            label_area_all = label_area_all + label_area

    class_iou, miou = metrics.mean_iou(intersect_area_all, pred_area_all,
                                       label_area_all)
    class_acc, acc = metrics.accuracy(intersect_area_all, pred_area_all)
    kappa = metrics.kappa(intersect_area_all, pred_area_all, label_area_all)
    class_dice, mdice = metrics.dice(intersect_area_all, pred_area_all,
                                     label_area_all)

    infor = "[EVAL] #Images: {} mIoU: {:.4f} Acc: {:.4f} Kappa: {:.4f} Dice: {:.4f}".format(
        len(eval_dataset), miou, acc, kappa, mdice)
    print(infor)

    paddle.enable_static()
    return miou


def reader_wrapper(reader):
    def gen():
        for i, data in enumerate(reader()):
            imgs = np.array(data[0])
            yield {"x": imgs}

    return gen


if __name__ == '__main__':

    args = parse_args()

W
whs 已提交
156 157 158 159
    # step1: load dataset config and create dataloader
    data_cfg = PaddleSegDataConfig(args.dataset_config)
    train_dataset = data_cfg.train_dataset
    eval_dataset = data_cfg.val_dataset
Z
zhouzj 已提交
160
    batch_sampler = paddle.io.DistributedBatchSampler(
W
whs 已提交
161 162 163 164
        train_dataset,
        batch_size=data_cfg.batch_size,
        shuffle=True,
        drop_last=True)
Z
zhouzj 已提交
165 166 167 168 169
    train_loader = paddle.io.DataLoader(
        train_dataset,
        batch_sampler=batch_sampler,
        num_workers=2,
        return_list=True,
Z
zhouzj 已提交
170
        worker_init_fn=worker_init_fn)
Z
zhouzj 已提交
171 172
    train_dataloader = reader_wrapper(train_loader)

W
whs 已提交
173
    # step2: create and instance of AutoCompression
Z
zhouzj 已提交
174 175 176
    ac = AutoCompression(
        model_dir=args.model_dir,
        model_filename=args.model_filename,
C
ceci3 已提交
177
        params_filename=args.params_filename,
Z
zhouzj 已提交
178
        save_dir=args.save_dir,
W
whs 已提交
179
        config=args.strategy_config,
Z
zhouzj 已提交
180
        train_dataloader=train_dataloader,
Z
zhouzj 已提交
181 182
        eval_callback=eval_function,
        deploy_hardware=args.deploy_hardware)
Z
zhouzj 已提交
183

W
whs 已提交
184
    # step3: start the compression job
Z
zhouzj 已提交
185
    ac.compress()