train.py 9.6 KB
Newer Older
B
baiyfbupt 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import sys
import math
import logging
import paddle
import argparse
import functools
import numpy as np
import paddle.fluid as fluid
sys.path.append(sys.path[0] + "/../")
import models
import imagenet_reader as reader
from utility import add_arguments, print_arguments
from paddleslim.dist import merge, l2_loss, soft_label_loss, fsp_loss

logging.basicConfig(format='%(asctime)s-%(levelname)s: %(message)s')
_logger = logging.getLogger(__name__)
_logger.setLevel(logging.INFO)

parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
add_arg('batch_size',       int,  64*4,                 "Minibatch size.")
add_arg('use_gpu',          bool, True,                "Whether to use GPU or not.")
add_arg('total_images',     int,  1281167,              "Training image number.")
add_arg('image_shape',      str,  "3,224,224",         "Input image size")
add_arg('lr',               float,  0.1,               "The learning rate used to fine-tune pruned model.")
add_arg('lr_strategy',      str,  "piecewise_decay",   "The learning rate decay strategy.")
add_arg('l2_decay',         float,  3e-5,               "The l2_decay parameter.")
add_arg('momentum_rate',    float,  0.9,               "The value of momentum_rate.")
add_arg('num_epochs',       int,  120,               "The number of total epochs.")
add_arg('data',             str, "mnist",                 "Which data to use. 'mnist' or 'imagenet'")
add_arg('log_period',       int, 20,                 "Log period in batches.")
add_arg('model',            str,  "MobileNet",          "Set the network to use.")
add_arg('pretrained_model', str,  None,                "Whether to use pretrained model.")
add_arg('teacher_model',    str,  "ResNet50",          "Set the teacher network to use.")
add_arg('teacher_pretrained_model', str,  "../pretrain/ResNet50_pretrained",                "Whether to use pretrained model.")
parser.add_argument('--step_epochs', nargs='+', type=int, default=[30, 60, 90], help="piecewise decay step")
# yapf: enable

model_list = [m for m in dir(models) if "__" not in m]


def piecewise_decay(args):
    step = int(math.ceil(float(args.total_images) / args.batch_size))
    bd = [step * e for e in args.step_epochs]
    lr = [args.lr * (0.1**i) for i in range(len(bd) + 1)]
    learning_rate = fluid.layers.piecewise_decay(boundaries=bd, values=lr)
    optimizer = fluid.optimizer.Momentum(
        learning_rate=learning_rate,
        momentum=args.momentum_rate,
        regularization=fluid.regularizer.L2Decay(args.l2_decay))
    return optimizer


def cosine_decay(args):
    step = int(math.ceil(float(args.total_images) / args.batch_size))
    learning_rate = fluid.layers.cosine_decay(
        learning_rate=args.lr, step_each_epoch=step, epochs=args.num_epochs)
    optimizer = fluid.optimizer.Momentum(
        learning_rate=learning_rate,
        momentum=args.momentum_rate,
        regularization=fluid.regularizer.L2Decay(args.l2_decay))
    return optimizer


def create_optimizer(args):
    if args.lr_strategy == "piecewise_decay":
        return piecewise_decay(args)
    elif args.lr_strategy == "cosine_decay":
        return cosine_decay(args)


def compress(args):
    if args.data == "mnist":
        import paddle.dataset.mnist as reader
        train_reader = reader.train()
        val_reader = reader.test()
        class_dim = 10
        image_shape = "1,28,28"
    elif args.data == "imagenet":
        import imagenet_reader as reader
        train_reader = reader.train()
        val_reader = reader.val()
        class_dim = 1000
        image_shape = "3,224,224"
    else:
        raise ValueError("{} is not supported.".format(args.data))
    image_shape = [int(m) for m in image_shape.split(",")]

    assert args.model in model_list, "{} is not in lists: {}".format(
        args.model, model_list)
    student_program = fluid.Program()
    s_startup = fluid.Program()

    with fluid.program_guard(student_program, s_startup):
        with fluid.unique_name.guard():
            image = fluid.layers.data(
                name='image', shape=image_shape, dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            train_loader = fluid.io.DataLoader.from_generator(
                feed_list=[image, label],
                capacity=64,
                use_double_buffer=True,
                iterable=True)
            valid_loader = fluid.io.DataLoader.from_generator(
                feed_list=[image, label],
                capacity=64,
                use_double_buffer=True,
                iterable=True)
            # model definition
            model = models.__dict__[args.model]()
            out = model.net(input=image, class_dim=class_dim)
            cost = fluid.layers.cross_entropy(input=out, label=label)
            avg_cost = fluid.layers.mean(x=cost)
            acc_top1 = fluid.layers.accuracy(input=out, label=label, k=1)
            acc_top5 = fluid.layers.accuracy(input=out, label=label, k=5)
    #print("="*50+"student_model_params"+"="*50)
    #for v in student_program.list_vars():
    #    print(v.name, v.shape)

    place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)

    train_reader = paddle.batch(
        train_reader, batch_size=args.batch_size, drop_last=True)
    val_reader = paddle.batch(
        val_reader, batch_size=args.batch_size, drop_last=True)
    val_program = student_program.clone(for_test=True)

    places = fluid.cuda_places()
    train_loader.set_sample_list_generator(train_reader, places)
    valid_loader.set_sample_list_generator(val_reader, place)

    teacher_model = models.__dict__[args.teacher_model]()
    # define teacher program
    teacher_program = fluid.Program()
    t_startup = fluid.Program()
    teacher_scope = fluid.Scope()
    with fluid.scope_guard(teacher_scope):
        with fluid.program_guard(teacher_program, t_startup):
            with fluid.unique_name.guard():
                image = fluid.layers.data(
                    name='image', shape=image_shape, dtype='float32')
                predict = teacher_model.net(image, class_dim=class_dim)

            #print("="*50+"teacher_model_params"+"="*50)
            #for v in teacher_program.list_vars():
            #    print(v.name, v.shape)

        exe.run(t_startup)
        assert args.teacher_pretrained_model and os.path.exists(
            args.teacher_pretrained_model
        ), "teacher_pretrained_model should be set when teacher_model is not None."

        def if_exist(var):
            return os.path.exists(
                os.path.join(args.teacher_pretrained_model, var.name)
            ) and var.name != 'conv1_weights' and var.name != 'fc_0.w_0' and var.name != 'fc_0.b_0'

        fluid.io.load_vars(
            exe,
            args.teacher_pretrained_model,
            main_program=teacher_program,
            predicate=if_exist)

    data_name_map = {'image': 'image'}
    main = merge(
        teacher_program,
        student_program,
        data_name_map,
        place,
        teacher_scope=teacher_scope)

    #print("="*50+"teacher_vars"+"="*50)
    #for v in teacher_program.list_vars():
    #    if '_generated_var' not in v.name and 'fetch' not in v.name and 'feed' not in v.name:
    #        print(v.name, v.shape)
    #return

    with fluid.program_guard(main, s_startup):
        l2_loss_v = l2_loss("teacher_fc_0.tmp_0", "fc_0.tmp_0", main)
        fsp_loss_v = fsp_loss("teacher_res2a_branch2a.conv2d.output.1.tmp_0",
                              "teacher_res3a_branch2a.conv2d.output.1.tmp_0",
                              "depthwise_conv2d_1.tmp_0", "conv2d_3.tmp_0",
                              main)
        loss = avg_cost + l2_loss_v + fsp_loss_v
        opt = create_optimizer(args)
        opt.minimize(loss)
    exe.run(s_startup)
    build_strategy = fluid.BuildStrategy()
    build_strategy.fuse_all_reduce_ops = False
    parallel_main = fluid.CompiledProgram(main).with_data_parallel(
        loss_name=loss.name, build_strategy=build_strategy)

    for epoch_id in range(args.num_epochs):
        for step_id, data in enumerate(train_loader):
            loss_1, loss_2, loss_3, loss_4 = exe.run(
                parallel_main,
                feed=data,
                fetch_list=[
                    loss.name, avg_cost.name, l2_loss_v.name, fsp_loss_v.name
                ])
            if step_id % args.log_period == 0:
                _logger.info(
                    "train_epoch {} step {} loss {:.6f}, class loss {:.6f}, l2 loss {:.6f}, fsp loss {:.6f}".
                    format(epoch_id, step_id, loss_1[0], loss_2[0], loss_3[0],
                           loss_4[0]))
        val_acc1s = []
        val_acc5s = []
        for step_id, data in enumerate(valid_loader):
            val_loss, val_acc1, val_acc5 = exe.run(
                val_program,
                data,
                fetch_list=[avg_cost.name, acc_top1.name, acc_top5.name])
            val_acc1s.append(val_acc1)
            val_acc5s.append(val_acc5)
            if step_id % args.log_period == 0:
                _logger.info(
                    "valid_epoch {} step {} loss {:.6f}, top1 {:.6f}, top5 {:.6f}".
                    format(epoch_id, step_id, val_loss[0], val_acc1[0],
                           val_acc5[0]))
        _logger.info("epoch {} top1 {:.6f}, top5 {:.6f}".format(
            epoch_id, np.mean(val_acc1s), np.mean(val_acc5s)))


def main():
    args = parser.parse_args()
    print_arguments(args)
    compress(args)


if __name__ == '__main__':
    main()