dy_graph.py 12.4 KB
Newer Older
W
wanghaoshuang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import copy
import pickle
import numpy as np
from collections import OrderedDict
from collections import Iterable
import torch

__all__ = ['DyGraph', 'VarWrapper', 'OpWrapper']


class VarWrapper(object):
    def __init__(self, id, is_parameter=False, tensor=None):
        self._id = id
        self._inputs = []
        self._outputs = []
        self._is_parameter = is_parameter
        self._tensor = tensor

    def __eq__(self, v):
        """
        Overwrite this function for ...in... syntax in python.
        """
        return self._id == v._id

    def name(self):
        """
        Get the name of the variable.
        """
        return self._id

    def __repr__(self):
        return "id: {};".format(self._id)

    def shape(self):
        """
        Get the shape of the varibale.
        """
        return self._tensor.shape

    def set_shape(self, shape):
        """
        Set the shape of the variable.
        """
        assert ("Unimplement")

    def inputs(self):
        """
        Get all the operators that use this variable as output.

        Returns:
            list<OpWrapper>: A list of operators.
        """
        return self._inputs

    def outputs(self):
        """
        Get all the operators that use this variable as input.

        Returns:
            list<OpWrapper>: A list of operators.
        """
        return self._outputs

    def is_parameter(self):
        return self._is_parameter


class OpWrapper(object):
    def __init__(self, id, name):
        self._id = id
        self.name = name
        self.module = None
        self._inputs = []
        self._outputs = []

    def __eq__(self, op):
        """
        Overwrite this function for ...in... syntax in python.
        """
        return self.id() == op.id()

    def all_inputs(self):
        """
        Get all the input variables of this operator.
        """
        return self._inputs

    def all_outputs(self):
        """
        Get all the output variables of this operator.
        """
        return self._outputs

    def id(self):
        """
        Get the id of this operator.
        """
        return self._id

    def type(self):
        """
        Get the type of this operator.
        """
        if self.module is not None:
            return self.module.__class__.__name__
        else:
            if self.name.startswith("aten::"):
                return self.name.split(":")[-1]

    def __repr__(self):
        return "op[id: {}, type: {}; inputs: {}]".format(self.id(),
                                                         self.type(),
                                                         self.all_inputs())

    def is_bwd_op(self):
        """
        Whether this operator is backward op.
        """
        return False

    def is_opt_op(self):
        """
        Whether this operator is optimizer op.
        """
        return False

    def inputs(self, name):
        """
        Get all the varibales by the input name.
        """
        return [self._graph.var(var_name) for var_name in self._op.input(name)]

    def outputs(self, name):
        """
        Get all the varibales by the output name.
        """
        return [
            self._graph.var(var_name) for var_name in self._op.output(name)
        ]

    def set_attr(self, key, value):
        """
        Set the value of attribute by attribute's name.

        Args:
            key(str): the attribute name.
            value(bool|int|str|float|list): the value of the attribute.
        """
        self._op._set_attr(key, value)

    def attr(self, name):
        """
        Get the attribute by name.

        Args:
            name(str): the attribute name.

        Returns:
            bool|int|str|float|list: The attribute value. The return value
            can be any valid attribute type.
        """
        print dir(self.module)
        return self._op.attr(name)


class DyGraph(object):
    """
    It is a wrapper of paddle.fluid.framework.IrGraph with some special functions
    for paddle slim framework.

    Args:
        program(framework.Program): A program with 
        in_nodes(dict): A dict to indicate the input nodes of the graph.
                        The key is user-defined and human-readable name.
                        The value is the name of Variable.
        out_nodes(dict): A dict to indicate the input nodes of the graph.
                        The key is user-defined and human-readable name.
                        The value is the name of Variable.
    """

    def __init__(self, module, input_shape):
        """
        """
        super(DyGraph, self).__init__()
        self.module = module
        self._graph = torch.jit.trace(self.module,
                                      torch.rand(input_shape)).graph
        print self._graph
        self.children = {}
        for name, child in self.module.named_children():
            self.children[name] = child

        self.id2child = {}
        for node in self._graph.nodes():
            if "prim::GetAttr" == node.kind() and "self.1" == node.inputsAt(
                    0).debugName():
                #                    print dir(node)
                self.id2child[node.output().debugName()] = node["name"]

        print self.id2child

        self.vars = {}
        self.nodes = {}
        for node in self._graph.nodes():
            if "prim::CallMethod" == node.kind() and "forward" == node["name"]:
                module_id = node.inputsAt(0).debugName()
                node_id = node.output().debugName() + "-" + module_id
                in_var_id = node.inputsAt(1).debugName()
                out_var_id = node.output().debugName()
                if node_id not in self.nodes:
                    self.nodes[node_id] = OpWrapper(node_id,
                                                    self.id2child[module_id])
                    self.nodes[node_id].module = self.children[self.id2child[
                        module_id]]

                for param_id, param in self.nodes[
                        node_id].module.named_parameters():
                    param_id = ".".join([self.id2child[module_id], param_id])
                    if param_id not in self.vars:
                        self.vars[param_id] = VarWrapper(
                            param_id, is_parameter=True, tensor=param)
                        self.nodes[node_id].all_inputs().append(self.vars[
                            param_id])
                        self.vars[param_id].outputs().append(self.nodes[
                            node_id])

                if in_var_id not in self.vars:
                    self.vars[in_var_id] = VarWrapper(in_var_id)
                if out_var_id not in self.vars:
                    self.vars[out_var_id] = VarWrapper(out_var_id)
                self.nodes[node_id].all_inputs().append(self.vars[in_var_id])
                self.nodes[node_id].all_outputs().append(self.vars[out_var_id])
                self.vars[in_var_id].outputs().append(self.nodes[node_id])
                self.vars[out_var_id].inputs().append(self.nodes[node_id])
            elif node.kind().startswith("aten::"):
                #                print dir(node)
                node_id = node.output().debugName() + "-" + node.kind()
                #                node_id = node.debugName()
                if node_id not in self.nodes:
                    self.nodes[node_id] = OpWrapper(node_id, node.kind())

#                    self.nodes[node_id].type = node.kind()
                for input in node.inputs():
                    in_var_id = input.debugName()
                    if in_var_id not in self.vars:
                        self.vars[in_var_id] = VarWrapper(in_var_id)
                    self.vars[in_var_id].outputs().append(self.nodes[node_id])
                    self.nodes[node_id].all_inputs().append(self.vars[
                        in_var_id])

                for output in node.outputs():
                    out_var_id = output.debugName()
                    if out_var_id not in self.vars:
                        self.vars[out_var_id] = VarWrapper(out_var_id)
                    self.vars[out_var_id].inputs().append(self.nodes[node_id])
                    self.nodes[node_id].all_outputs().append(self.vars[
                        out_var_id])

    def all_parameters(self):
        """
        Get all the parameters in this graph.

        Returns:
            list<VarWrapper>: A list of VarWrapper instances.
        """
        params = []
        for var in self.vars.values():
            if var.is_parameter():
                params.append(var)
        return params

    def is_parameter(self, var):
        """
        Whether the given variable is parameter.

        Args:
            var(VarWrapper): The given varibale.
        """
        return var.is_parameter()

    def ops(self):
        """
        Return all operator nodes included in the graph as a set.
        """
        return self.nodes.values()

    def vars(self):
        """
        Get all the variables.
        """
        return self.vars.values()

    def var(self, name):
        """
        Get the variable by variable name.
        """
        return self.vars[name]

    def clone(self, for_test=False):
        """
        Clone a new graph from current graph.

        Returns:
            (DyGraph): The wrapper of a new graph.
        """
        return DyGraph(
            self.program.clone(for_test),
            copy.deepcopy(self.in_nodes), copy.deepcopy(self.out_nodes))

    def program(self):
        """
        Get the program in current wrapper.
        """
        return self.program

    def pre_ops(self, op):
        """
        Get all the previous operators of target operator.

        Args:
            op(OpWrapper): Target operator.

        Returns:
            list<OpWrapper>: A list of operators.
        """
        ops = []
        for p in self.ops():
            for in_var in op.all_inputs():
                if in_var in p.all_outputs():
                    ops.append(p)
        return ops

    def next_ops(self, op):
        """
        Get all the next operators of target operator.

        Args:
            op(OpWrapper): Target operator.

        Returns:
            list<OpWrapper>: A list of operators.
        """
        ops = []
        for p in self.ops():
            for out_var in op.all_outputs():
                if out_var in p.all_inputs():
                    ops.append(p)
        return ops

    def get_param_by_op(self, op):
        """
        Get the parameters used by target operator.
        """
        assert isinstance(op, OpWrapper)
        params = []
        for var in op.all_inputs():
            if isinstance(var._var, Parameter):
                params.append(var)
        assert len(params) > 0
        return params

    def numel_params(self):
        """
        Get the number of elements in all parameters.
        """
        ret = 0
        for param in self.all_parameters():
            ret += np.product(param.shape())
        return ret

    def update_param_shape(self, scope):
        """
        Update the shape of parameters in the graph according to tensors in scope.
        It is used after loading pruned parameters from file.
        """
        for param in self.all_parameters():
            tensor_shape = np.array(
                scope.find_var(param.name()).get_tensor()).shape
            param.set_shape(tensor_shape)

    def infer_shape(self):
        """
        Update the groups of convolution layer according to current filters.
        It is used after loading pruned parameters from file.
        """
        for op in self.ops():
            if op.type() != 'conditional_block':
                op._op.desc.infer_shape(op._op.block.desc)

    def update_groups_of_conv(self):
        for op in self.ops():
            if op.type() == 'depthwise_conv2d' or op.type(
            ) == 'depthwise_conv2d_grad':
                op.set_attr('groups', op.inputs('Filter')[0].shape()[0])