graph_wrapper.py 10.0 KB
Newer Older
W
wanghaoshuang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import copy
import pickle
import numpy as np
from collections import OrderedDict
from collections import Iterable
from paddle.fluid.framework import Program, program_guard, Parameter, Variable

__all__ = ['GraphWrapper', 'VarWrapper', 'OpWrapper']

OPTIMIZER_OPS = [
    'momentum',
    'lars_momentum',
    'adagrad',
    'adam',
    'adamax',
    'dpsgd',
    'decayed_adagrad',
    'adadelta',
    'rmsprop',
]


class VarWrapper(object):
    def __init__(self, var, graph):
        assert isinstance(var, Variable)
        assert isinstance(graph, GraphWrapper)
        self._var = var
        self._graph = graph

    def __eq__(self, v):
        """
        Overwrite this function for ...in... syntax in python.
        """
        return self._var.name == v._var.name

    def name(self):
        """
        Get the name of the variable.
        """
        return self._var.name

    def shape(self):
        """
        Get the shape of the varibale.
        """
        return self._var.shape

    def set_shape(self, shape):
        """
        Set the shape of the variable.
        """
        self._var.desc.set_shape(shape)

    def inputs(self):
        """
        Get all the operators that use this variable as output.
        Returns:
            list<OpWrapper>: A list of operators.
        """
        ops = []
        for op in self._graph.ops():
            if self in op.all_outputs():
                ops.append(op)
        return ops

    def outputs(self):
        """
        Get all the operators that use this variable as input.
        Returns:
            list<OpWrapper>: A list of operators.
        """
        ops = []
        for op in self._graph.ops():
            if self in op.all_inputs():
                ops.append(op)
        return ops


class OpWrapper(object):
    def __init__(self, op, graph):
        assert isinstance(graph, GraphWrapper)
        self._op = op
        self._graph = graph

    def __eq__(self, op):
        """
        Overwrite this function for ...in... syntax in python.
        """
        return self.idx() == op.idx()

    def all_inputs(self):
        """
        Get all the input variables of this operator.
        """
        return [
            self._graph.var(var_name) for var_name in self._op.input_arg_names
        ]

    def all_outputs(self):
        """
        Get all the output variables of this operator.
        """
        return [
            self._graph.var(var_name) for var_name in self._op.output_arg_names
        ]

    def idx(self):
        """
        Get the id of this operator.
        """
        return self._op.idx

    def type(self):
        """
        Get the type of this operator.
        """
        return self._op.type

    def is_bwd_op(self):
        """
        Whether this operator is backward op.
        """
        return self.type().endswith('_grad')

    def is_opt_op(self):
        """
        Whether this operator is optimizer op.
        """
        return self.type() in OPTIMIZER_OPS

    def inputs(self, name):
        """
        Get all the varibales by the input name.
        """
        return [self._graph.var(var_name) for var_name in self._op.input(name)]

    def outputs(self, name):
        """
        Get all the varibales by the output name.
        """
        return [
            self._graph.var(var_name) for var_name in self._op.output(name)
        ]

    def set_attr(self, key, value):
        """
        Set the value of attribute by attribute's name.

        Args:
            key(str): the attribute name.
            value(bool|int|str|float|list): the value of the attribute.
        """
        self._op._set_attr(key, value)

    def attr(self, name):
        """
        Get the attribute by name.

        Args:
            name(str): the attribute name.

        Returns:
            bool|int|str|float|list: The attribute value. The return value
            can be any valid attribute type.
        """
        return self._op.attr(name)


class GraphWrapper(object):
    """
    It is a wrapper of paddle.fluid.framework.IrGraph with some special functions
    for paddle slim framework.
    """

    def __init__(self, program=None, in_nodes=[], out_nodes=[]):
        """
        Args:
            program(framework.Program): A program with 
            in_nodes(dict): A dict to indicate the input nodes of the graph.
                            The key is user-defined and human-readable name.
                            The value is the name of Variable.
            out_nodes(dict): A dict to indicate the input nodes of the graph.
                            The key is user-defined and human-readable name.
                            The value is the name of Variable.
        """
        super(GraphWrapper, self).__init__()
        self.program = Program() if program is None else program
        self.persistables = {}
        self.teacher_persistables = {}
        for var in self.program.list_vars():
            if var.persistable:
                self.persistables[var.name] = var
        self.compiled_graph = None
        in_nodes = [] if in_nodes is None else in_nodes
        out_nodes = [] if out_nodes is None else out_nodes
        self.in_nodes = OrderedDict(in_nodes)
        self.out_nodes = OrderedDict(out_nodes)
        self._attrs = OrderedDict()

    def all_parameters(self):
        """
        Get all the parameters in this graph.
        Returns:
            list<VarWrapper>: A list of VarWrapper instances.
        """
        params = []
        for block in self.program.blocks:
            for param in block.all_parameters():
                params.append(VarWrapper(param, self))
        return params

    def is_parameter(self, var):
        """
        Whether the given variable is parameter.
        Args:
            var(VarWrapper): The given varibale.
        """
        return isinstance(var._var, Parameter)

    def is_persistable(self, var):
        """
        Whether the given variable is persistable.
        Args:
            var(VarWrapper): The given varibale.
        """
        return var._var.persistable

    def ops(self):
        """
        Return all operator nodes included in the graph as a set.
        """
        ops = []
        for block in self.program.blocks:
            for op in block.ops:
                ops.append(OpWrapper(op, self))
        return ops

    def vars(self):
        """
        Get all the variables.
        """
        return [VarWrapper(var, self) for var in self.program.list_vars()]

    def var(self, name):
        """
        Get the variable by variable name.
        """
        return VarWrapper(self.program.global_block().var(name), self)

    def clone(self, for_test=False):
        """
        Clone a new graph from current graph.
        Returns:
            (GraphWrapper): The wrapper of a new graph.
        """
        return GraphWrapper(
            self.program.clone(for_test),
            copy.deepcopy(self.in_nodes), copy.deepcopy(self.out_nodes))

    def program(self):
        """
        Get the program in current wrapper.
        """
        return self.program

    def pre_ops(self, op):
        """
        Get all the previous operators of target operator.
        Args:
            op(OpWrapper): Target operator..
        Returns:
            list<OpWrapper>: A list of operators.
        """
        ops = []
        for p in self.ops():
            for in_var in op.all_inputs():
                if in_var in p.all_outputs():
                    ops.append(p)
        return ops

    def next_ops(self, op):
        """
        Get all the next operators of target operator.
        Args:
            op(OpWrapper): Target operator..
        Returns:
            list<OpWrapper>: A list of operators.
        """
        ops = []
        for p in self.ops():
            for out_var in op.all_outputs():
                if out_var in p.all_inputs():
                    ops.append(p)
        return ops

    def get_param_by_op(self, op):
        """
        Get the parameters used by target operator.
        """
        assert isinstance(op, OpWrapper)
        params = []
        for var in op.all_inputs():
            if isinstance(var._var, Parameter):
                params.append(var)
        assert len(params) > 0
        return params

    def numel_params(self):
        """
        Get the number of elements in all parameters.
        """
        ret = 0
        for param in self.all_parameters():
            ret += np.product(param.shape())
        return ret

    def update_param_shape(self, scope):
        """
        Update the shape of parameters in the graph according to tensors in scope.
        It is used after loading pruned parameters from file.
        """
        for param in self.all_parameters():
            tensor_shape = np.array(
                scope.find_var(param.name()).get_tensor()).shape
            param.set_shape(tensor_shape)

    def infer_shape(self):
        """
        Update the groups of convolution layer according to current filters.
        It is used after loading pruned parameters from file.
        """
        for op in self.ops():
            if op.type() != 'conditional_block':
                op._op.desc.infer_shape(op._op.block.desc)

    def update_groups_of_conv(self):
        for op in self.ops():
            if op.type() == 'depthwise_conv2d' or op.type(
            ) == 'depthwise_conv2d_grad':
                op.set_attr('groups', op.inputs('Filter')[0].shape()[0])