train.py 13.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import sys
import logging
import paddle
import argparse
import functools
import math
import time
import random
import numpy as np
29 30
import distutils.util
import six
31 32 33 34 35 36 37 38 39 40 41 42
from paddle.distributed import ParallelEnv
from paddle.static import load_program_state
from paddle.vision.models import mobilenet_v1
import paddle.vision.transforms as T
from paddleslim.common import get_logger
from paddleslim.dygraph.rep import Reparameter, DBBRepConfig, ACBRepConfig

sys.path.append(os.path.join(os.path.dirname("__file__")))
from optimizer import create_optimizer

_logger = get_logger(__name__, level=logging.INFO)

43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82

def print_arguments(args):
    """Print argparse's arguments.

    Usage:

    .. code-block:: python

        parser = argparse.ArgumentParser()
        parser.add_argument("name", default="Jonh", type=str, help="User name.")
        args = parser.parse_args()
        print_arguments(args)

    :param args: Input argparse.Namespace for printing.
    :type args: argparse.Namespace
    """
    print("-----------  Configuration Arguments -----------")
    for arg, value in sorted(six.iteritems(vars(args))):
        print("%s: %s" % (arg, value))
    print("------------------------------------------------")


def add_arguments(argname, type, default, help, argparser, **kwargs):
    """Add argparse's argument.

    Usage:

    .. code-block:: python

        parser = argparse.ArgumentParser()
        add_argument("name", str, "Jonh", "User name.", parser)
        args = parser.parse_args()
    """
    type = distutils.util.strtobool if type == bool else type
    argparser.add_argument(
        "--" + argname,
        default=default,
        type=type,
        help=help + ' Default: %(default)s.',
        **kwargs)
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132


def load_dygraph_pretrain(model, path=None, load_static_weights=False):
    if not (os.path.isdir(path) or os.path.exists(path + '.pdparams')):
        raise ValueError("Model pretrain path {} does not "
                         "exists.".format(path))
    if load_static_weights:
        pre_state_dict = load_program_state(path)
        param_state_dict = {}
        model_dict = model.state_dict()
        for key in model_dict.keys():
            weight_name = model_dict[key].name
            if weight_name in pre_state_dict.keys():
                print('Load weight: {}, shape: {}'.format(
                    weight_name, pre_state_dict[weight_name].shape))
                param_state_dict[key] = pre_state_dict[weight_name]
            else:
                param_state_dict[key] = model_dict[key]
        model.set_dict(param_state_dict)
        return

    param_state_dict = paddle.load(path + ".pdparams")
    model.set_dict(param_state_dict)
    return


def train(args):
    num_workers = 4
    shuffle = True
    if args.ce_test:
        # set seed
        seed = 111
        paddle.seed(seed)
        np.random.seed(seed)
        random.seed(seed)
        num_workers = 0
        shuffle = False

    if args.data == "cifar10":
        transform = T.Compose([T.Transpose(), T.Normalize([127.5], [127.5])])
        train_dataset = paddle.vision.datasets.Cifar10(
            mode="train", backend="cv2", transform=transform)
        val_dataset = paddle.vision.datasets.Cifar10(
            mode="test", backend="cv2", transform=transform)
        class_dim = 10
        image_shape = [3, 32, 32]
        pretrain = False
        args.total_images = 50000
    elif args.data == "imagenet":
        import imagenet_reader as reader
133 134 135
        train_dataset = reader.ImageNetDataset(
            data_dir=args.data_dir, mode='train')
        val_dataset = reader.ImageNetDataset(data_dir=args.data_dir, mode='val')
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
        class_dim = 1000
        image_shape = "3,224,224"
    else:
        raise ValueError("{} is not supported.".format(args.data))

    trainer_num = paddle.distributed.get_world_size()
    use_data_parallel = trainer_num != 1

    place = paddle.set_device('gpu' if args.use_gpu else 'cpu')
    # model definition
    if use_data_parallel:
        paddle.distributed.init_parallel_env()

    pretrain = True if args.data == "imagenet" else False
    net = mobilenet_v1(pretrained=pretrain, num_classes=class_dim)

    rep_config = DBBRepConfig()
    reper = Reparameter(rep_config)
    reper.prepare(net)
    paddle.summary(net, (1, 3, 224, 224))

    opt, lr = create_optimizer(net, trainer_num, args)

    if use_data_parallel:
        net = paddle.DataParallel(net)

    train_batch_sampler = paddle.io.DistributedBatchSampler(
        train_dataset,
        batch_size=args.batch_size,
        shuffle=shuffle,
        drop_last=True)
    train_loader = paddle.io.DataLoader(
        train_dataset,
        batch_sampler=train_batch_sampler,
        places=place,
        return_list=True,
        num_workers=num_workers)

    valid_loader = paddle.io.DataLoader(
        val_dataset,
        places=place,
        batch_size=args.batch_size,
        shuffle=False,
        drop_last=False,
        return_list=True,
        num_workers=num_workers)

    @paddle.no_grad()
    def test(epoch, net):
        net.eval()
        batch_id = 0
        acc_top1_ns = []
        acc_top5_ns = []

        eval_reader_cost = 0.0
        eval_run_cost = 0.0
        total_samples = 0
        reader_start = time.time()
        for data in valid_loader():
            eval_reader_cost += time.time() - reader_start
            image = data[0]
            label = data[1]
            if args.data == "cifar10":
                label = paddle.reshape(label, [-1, 1])

            eval_start = time.time()

            out = net(image)
            acc_top1 = paddle.metric.accuracy(input=out, label=label, k=1)
            acc_top5 = paddle.metric.accuracy(input=out, label=label, k=5)

            eval_run_cost += time.time() - eval_start
            batch_size = image.shape[0]
            total_samples += batch_size

            if batch_id % args.log_period == 0:
                log_period = 1 if batch_id == 0 else args.log_period
                _logger.info(
                    "Eval epoch[{}] batch[{}] - top1: {:.6f}; top5: {:.6f}; avg_reader_cost: {:.6f} s, avg_batch_cost: {:.6f} s, avg_samples: {}, avg_ips: {:.3f} images/s".
                    format(epoch, batch_id,
                           np.mean(acc_top1.numpy()),
                           np.mean(acc_top5.numpy()), eval_reader_cost /
                           log_period, (eval_reader_cost + eval_run_cost) /
                           log_period, total_samples / log_period, total_samples
                           / (eval_reader_cost + eval_run_cost)))
                eval_reader_cost = 0.0
                eval_run_cost = 0.0
                total_samples = 0
            acc_top1_ns.append(np.mean(acc_top1.numpy()))
            acc_top5_ns.append(np.mean(acc_top5.numpy()))
            batch_id += 1
            reader_start = time.time()

        _logger.info(
            "Final eval epoch[{}] - acc_top1: {:.6f}; acc_top5: {:.6f}".format(
                epoch,
                np.mean(np.array(acc_top1_ns)), np.mean(np.array(acc_top5_ns))))
        return np.mean(np.array(acc_top1_ns))

    def cross_entropy(input, target, ls_epsilon):
        if ls_epsilon > 0:
            if target.shape[-1] != class_dim:
                target = paddle.nn.functional.one_hot(target, class_dim)
            target = paddle.nn.functional.label_smooth(
                target, epsilon=ls_epsilon)
            target = paddle.reshape(target, shape=[-1, class_dim])
            input = -paddle.nn.functional.log_softmax(input, axis=-1)
            cost = paddle.sum(target * input, axis=-1)
        else:
            cost = paddle.nn.functional.cross_entropy(input=input, label=target)
        avg_cost = paddle.mean(cost)
        return avg_cost

    def train(epoch, net):

        net.train()
        batch_id = 0

        train_reader_cost = 0.0
        train_run_cost = 0.0
        total_samples = 0
        reader_start = time.time()
        for data in train_loader():
            train_reader_cost += time.time() - reader_start

            image = data[0]
            label = data[1]
            if args.data == "cifar10":
                label = paddle.reshape(label, [-1, 1])

            train_start = time.time()
            out = net(image)
            avg_cost = cross_entropy(out, label, args.ls_epsilon)

            acc_top1 = paddle.metric.accuracy(input=out, label=label, k=1)
            acc_top5 = paddle.metric.accuracy(input=out, label=label, k=5)
            avg_cost.backward()
            opt.step()
            opt.clear_grad()
            lr.step()

            loss_n = np.mean(avg_cost.numpy())
            acc_top1_n = np.mean(acc_top1.numpy())
            acc_top5_n = np.mean(acc_top5.numpy())

            train_run_cost += time.time() - train_start
            batch_size = image.shape[0]
            total_samples += batch_size

            if batch_id % args.log_period == 0:
                log_period = 1 if batch_id == 0 else args.log_period
                _logger.info(
                    "epoch[{}]-batch[{}] lr: {:.6f} - loss: {:.6f}; top1: {:.6f}; top5: {:.6f}; avg_reader_cost: {:.6f} s, avg_batch_cost: {:.6f} s, avg_samples: {}, avg_ips: {:.3f} images/s".
                    format(epoch, batch_id,
                           lr.get_lr(), loss_n, acc_top1_n, acc_top5_n,
                           train_reader_cost / log_period, (
                               train_reader_cost + train_run_cost) / log_period,
                           total_samples / log_period, total_samples / (
                               train_reader_cost + train_run_cost)))
                train_reader_cost = 0.0
                train_run_cost = 0.0
                total_samples = 0
            batch_id += 1
            reader_start = time.time()

    # train loop
    best_acc1 = 0.0
    best_epoch = 0
    for i in range(args.num_epochs):
        train(i, net)
        acc1 = test(i, net)
        if paddle.distributed.get_rank() == 0:
            model_prefix = os.path.join(args.model_save_dir, "epoch_" + str(i))
            paddle.save(net.state_dict(), model_prefix + ".pdparams")
            paddle.save(opt.state_dict(), model_prefix + ".pdopt")

        if acc1 > best_acc1:
            best_acc1 = acc1
            best_epoch = i
            if paddle.distributed.get_rank() == 0:
                model_prefix = os.path.join(args.model_save_dir, "best_model")
                paddle.save(net.state_dict(), model_prefix + ".pdparams")
                paddle.save(opt.state_dict(), model_prefix + ".pdopt")

    # Save model
    reper.convert(net)
    if paddle.distributed.get_rank() == 0:
        # load best model
        load_dygraph_pretrain(net,
                              os.path.join(args.model_save_dir, "best_model"))

        path = os.path.join(args.model_save_dir, "inference_model", 'rep_model')
        paddle.jit.save(
            net,
            path,
            input_spec=[
                paddle.static.InputSpec(
                    shape=[None, 3, 224, 224], dtype='float32')
            ])


337
def main(parser):
338 339 340 341 342 343
    args = parser.parse_args()
    print_arguments(args)
    train(args)


if __name__ == '__main__':
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
    parser = argparse.ArgumentParser(description=__doc__)
    add_arg = functools.partial(add_arguments, argparser=parser)
    # yapf: disable
    add_arg('batch_size',               int,    64,                                         "Single Card Minibatch size.")
    add_arg('data_dir',               str,    "dataset/ILSVRC2012/",                                         "Single Card Minibatch size.")
    add_arg('use_gpu',                  bool,   True,                                        "Whether to use GPU or not.")
    add_arg('lr',                       float,  0.1,                                      "The learning rate used to fine-tune pruned model.")
    add_arg('lr_strategy',              str,    "piecewise_decay",                           "The learning rate decay strategy.")
    add_arg('l2_decay',                 float,  0.00003,                                        "The l2_decay parameter.")
    add_arg('ls_epsilon',               float,  0.0,                                         "Label smooth epsilon.")
    add_arg('use_pact',                 bool,   False,                                       "Whether to use PACT method.")
    add_arg('ce_test',                 bool,   False,                                        "Whether to CE test.")
    add_arg('momentum_rate',            float,  0.9,                                         "The value of momentum_rate.")
    add_arg('num_epochs',               int,    120,                                           "The number of total epochs.")
    add_arg('total_images',             int,    1281167,                                     "The number of total training images.")
    add_arg('data',                     str,    "imagenet",                                  "Which data to use. 'cifar10' or 'imagenet'")
    add_arg('log_period',               int,    10,                                          "Log period in batches.")
    add_arg('model_save_dir',           str,    "./output_models",                           "model save directory.")
    parser.add_argument('--step_epochs', nargs='+', type=int, default=[30, 60, 90], help="piecewise decay step")
    # yapf: enable
    main(parser)