run.py 4.5 KB
Newer Older
C
ceci3 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys
import argparse
import functools
from functools import partial

import numpy as np
import paddle
import paddle.nn as nn
from paddle.io import DataLoader
from imagenet_reader import ImageNetDataset
26
from paddleslim.common import load_config as load_slim_config
C
ceci3 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
from paddleslim.auto_compression import AutoCompression


def argsparser():
    parser = argparse.ArgumentParser(description=__doc__)
    parser.add_argument(
        '--config_path',
        type=str,
        default=None,
        help="path of compression strategy config.",
        required=True)
    parser.add_argument(
        '--save_dir',
        type=str,
        default='output',
        help="directory to save compressed model.")
    return parser


# yapf: enable
def reader_wrapper(reader, input_name):
    def gen():
        for i, (imgs, label) in enumerate(reader()):
            yield {input_name: imgs}

    return gen


def eval_reader(data_dir, batch_size):
    val_reader = ImageNetDataset(mode='val', data_dir=data_dir)
    val_loader = DataLoader(
        val_reader,
        batch_size=global_config['batch_size'],
        shuffle=False,
        drop_last=False,
        num_workers=0)
    return val_loader


def eval_function(exe, compiled_test_program, test_feed_names, test_fetch_list):
    val_loader = eval_reader(data_dir, batch_size=global_config['batch_size'])

    results = []
    for batch_id, (image, label) in enumerate(val_loader):
        # top1_acc, top5_acc
        if len(test_feed_names) == 1:
            image = np.array(image)
            label = np.array(label).astype('int64')
            pred = exe.run(compiled_test_program,
                           feed={test_feed_names[0]: image},
                           fetch_list=test_fetch_list)
            pred = np.array(pred[0])
            label = np.array(label)
            sort_array = pred.argsort(axis=1)
            top_1_pred = sort_array[:, -1:][:, ::-1]
            top_1 = np.mean(label == top_1_pred)
            top_5_pred = sort_array[:, -5:][:, ::-1]
            acc_num = 0
            for i in range(len(label)):
                if label[i][0] in top_5_pred[i]:
                    acc_num += 1
            top_5 = float(acc_num) / len(label)
            results.append([top_1, top_5])
        else:
            # eval "eval model", which inputs are image and label, output is top1 and top5 accuracy
            image = np.array(image)
            label = np.array(label).astype('int64')
            result = exe.run(
                compiled_test_program,
                feed={test_feed_names[0]: image,
                      test_feed_names[1]: label},
                fetch_list=test_fetch_list)
            result = [np.mean(r) for r in result]
            results.append(result)
        if batch_id % 50 == 0:
            print('Eval iter: ', batch_id)
    result = np.mean(np.array(results), axis=0)
    return result[0]


def main():
    global global_config
    all_config = load_slim_config(args.config_path)
110 111
    assert "Global" in all_config, "Key 'Global' not found in config file. \n{}".format(
        all_config)
C
ceci3 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
    global_config = all_config["Global"]
    global data_dir
    data_dir = global_config['data_dir']

    train_dataset = ImageNetDataset(mode='train', data_dir=data_dir)

    train_loader = DataLoader(
        train_dataset,
        batch_size=global_config['batch_size'],
        shuffle=True,
        drop_last=True,
        num_workers=0)
    train_dataloader = reader_wrapper(train_loader, global_config['input_name'])

    ac = AutoCompression(
        model_dir=global_config['model_dir'],
        model_filename=global_config['model_filename'],
        params_filename=global_config['params_filename'],
        save_dir=args.save_dir,
        config=all_config,
        train_dataloader=train_dataloader,
        eval_callback=eval_function)

    ac.compress()


if __name__ == '__main__':
    paddle.enable_static()
    parser = argsparser()
    args = parser.parse_args()
    print_arguments(args)
    main()