test_analysis_qat_eval_func.py 7.6 KB
Newer Older
1 2 3 4
import os
import sys
import unittest
import numpy as np
C
Chang Xu 已提交
5 6
sys.path.append("../../")

7 8 9 10
import paddle
from PIL import Image
from paddle.vision.datasets import DatasetFolder
from paddle.vision.transforms import transforms
11
from paddleslim.quant.analysis import Analysis
12
from paddle.static.quantization import PostTrainingQuantization
13 14 15 16 17 18 19 20 21 22 23

paddle.enable_static()


class ImageNetDataset(DatasetFolder):
    def __init__(self, data_dir, image_size=224, mode='train'):
        super(ImageNetDataset, self).__init__(data_dir)
        self.data_dir = data_dir
        normalize = transforms.Normalize(
            mean=[123.675, 116.28, 103.53], std=[58.395, 57.120, 57.375])
        self.transform = transforms.Compose([
24 25
            transforms.Resize(256),
            transforms.CenterCrop(image_size),
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
            transforms.Transpose(), normalize
        ])
        self.mode = mode
        train_file_list = os.path.join(data_dir, 'train_list.txt')
        val_file_list = os.path.join(data_dir, 'val_list.txt')
        self.mode = mode
        if mode == 'train':
            with open(train_file_list) as flist:
                full_lines = [line.strip() for line in flist]
                np.random.shuffle(full_lines)
                lines = full_lines
            self.samples = [line.split() for line in lines]
        else:
            with open(val_file_list) as flist:
                lines = [line.strip() for line in flist]
                self.samples = [line.split() for line in lines]

    def __getitem__(self, idx):
        img_path, label = self.samples[idx]
        if self.mode == 'train':
            return self.transform(
                Image.open(os.path.join(self.data_dir, img_path)).convert(
                    'RGB'))
        else:
            return self.transform(
                Image.open(os.path.join(self.data_dir, img_path)).convert(
                    'RGB')), np.array([label]).astype('int64')

    def __len__(self):
        return len(self.samples)


class AnalysisQATEvalFunction(unittest.TestCase):
    def __init__(self, *args, **kwargs):
        super(AnalysisQATEvalFunction, self).__init__(*args, **kwargs)
        if not os.path.exists('MobileNetV1_infer'):
            os.system(
                'wget -q https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV1_infer.tar'
            )
            os.system('tar -xf MobileNetV1_infer.tar')
        if not os.path.exists('ILSVRC2012_data_demo'):
            os.system(
                'wget -q https://sys-p0.bj.bcebos.com/slim_ci/ILSVRC2012_data_demo.tar.gz'
            )
            os.system('tar -xf ILSVRC2012_data_demo.tar.gz')

    def test_demo(self):
        train_dataset = ImageNetDataset("./ILSVRC2012_data_demo/ILSVRC2012/")
        image = paddle.static.data(
            name='inputs', shape=[None] + [3, 224, 224], dtype='float32')
        label = paddle.static.data(
            name='labels', shape=[None] + [1], dtype='float32')
        train_loader = paddle.io.DataLoader(
            train_dataset, feed_list=[image], batch_size=8, return_list=False)

        def reader_wrapper(reader, input_name):
            def gen():
                for i, (imgs, label) in enumerate(reader()):
                    yield {input_name: imgs}

            return gen

        def eval_reader(data_dir,
                        batch_size,
                        crop_size,
                        resize_size,
                        place=None):
            val_dataset = ImageNetDataset(
                "./ILSVRC2012_data_demo/ILSVRC2012/", mode='val')
            val_loader = paddle.io.DataLoader(
                val_dataset,
                feed_list=[image, label],
                batch_size=batch_size,
                shuffle=False,
                drop_last=False,
                num_workers=0,
                return_list=False)
            return val_loader

        def eval_function(exe, compiled_test_program, test_feed_names,
                          test_fetch_list):
            val_loader = eval_reader(
                './ILSVRC2012_data_demo/ILSVRC2012/',
                batch_size=32,
                crop_size=224,
                resize_size=256)

            results = []
            print('Evaluating...')
            for batch_id, data in enumerate(val_loader):
                image = data[0]['inputs']
                label = data[0]['labels']
                # top1_acc, top5_acc
                if len(test_feed_names) == 1:
                    image = np.array(image)
                    label = np.array(label).astype('int64')
122 123 124 125
                    pred = exe.run(
                        compiled_test_program,
                        feed={test_feed_names[0]: image},
                        fetch_list=test_fetch_list)
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
                    pred = np.array(pred[0])
                    label = np.array(label)
                    sort_array = pred.argsort(axis=1)
                    top_1_pred = sort_array[:, -1:][:, ::-1]
                    top_1 = np.mean(label == top_1_pred)
                    top_5_pred = sort_array[:, -5:][:, ::-1]
                    acc_num = 0
                    for i in range(len(label)):
                        if label[i][0] in top_5_pred[i]:
                            acc_num += 1
                    top_5 = float(acc_num) / len(label)
                    results.append([top_1, top_5])
                else:
                    # eval "eval model", which inputs are image and label, output is top1 and top5 accuracy
                    image = np.array(image)
                    label = np.array(label).astype('int64')
142 143 144 145 146 147 148
                    result = exe.run(
                        compiled_test_program,
                        feed={
                            test_feed_names[0]: image,
                            test_feed_names[1]: label
                        },
                        fetch_list=test_fetch_list)
149 150 151 152 153 154 155
                    result = [np.mean(r) for r in result]
                    results.append(result)
                if batch_id % 100 == 0:
                    print('Eval iter: ', batch_id)
            result = np.mean(np.array(results), axis=0)
            return result[0]

156 157
        place = paddle.CUDAPlace(
            0) if paddle.is_compiled_with_cuda() else paddle.CPUPlace()
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
        executor = paddle.static.Executor(place)

        ptq_config = {
            'quantizable_op_type': ["conv2d", "depthwise_conv2d"],
            'weight_quantize_type': 'abs_max',
            'activation_quantize_type': 'moving_average_abs_max',
            'is_full_quantize': False,
            'batch_size': 8,
            'batch_nums': 10,
        }

        post_training_quantization = PostTrainingQuantization(
            executor=executor,
            data_loader=train_loader,
            model_dir="./MobileNetV1_infer",
            model_filename="inference.pdmodel",
            params_filename="inference.pdiparams",
            onnx_format=True,
            algo='avg',
            **ptq_config)
        post_training_quantization.quantize()
        post_training_quantization.save_quantized_model(
            "./MobileNetV1_QAT",
            model_filename='inference.pdmodel',
            params_filename='inference.pdiparams')

184
        analyzer = Analysis(
185 186 187 188 189
            float_model_dir="./MobileNetV1_infer",
            quant_model_dir="./MobileNetV1_QAT",
            model_filename="inference.pdmodel",
            params_filename="inference.pdiparams",
            save_dir="MobileNetV1_analysis",
190
            quant_config=ptq_config,
191 192 193 194 195 196 197 198 199
            data_loader=train_loader,
            eval_function=eval_function)
        analyzer.metric_error_analyse()
        os.system('rm -rf MobileNetV1_analysis')
        os.system('rm -rf MobileNetV1_QAT')


if __name__ == '__main__':
    unittest.main()