index.html 51.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  <meta http-equiv="X-UA-Compatible" content="IE=edge">
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  
  <link rel="shortcut icon" href="../../img/favicon.ico">
11
  <title>剪枝与敏感度 - PaddleSlim Docs</title>
12 13 14 15 16
  <link href='https://fonts.googleapis.com/css?family=Lato:400,700|Roboto+Slab:400,700|Inconsolata:400,700' rel='stylesheet' type='text/css'>

  <link rel="stylesheet" href="../../css/theme.css" type="text/css" />
  <link rel="stylesheet" href="../../css/theme_extra.css" type="text/css" />
  <link rel="stylesheet" href="//cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/styles/github.min.css">
17
  <link href="../../extra.css" rel="stylesheet">
18 19 20
  
  <script>
    // Current page data
21
    var mkdocs_page_name = "\u526a\u679d\u4e0e\u654f\u611f\u5ea6";
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
    var mkdocs_page_input_path = "api/prune_api.md";
    var mkdocs_page_url = null;
  </script>
  
  <script src="../../js/jquery-2.1.1.min.js" defer></script>
  <script src="../../js/modernizr-2.8.3.min.js" defer></script>
  <script src="//cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/highlight.min.js"></script>
  <script>hljs.initHighlightingOnLoad();</script> 
  
</head>

<body class="wy-body-for-nav" role="document">

  <div class="wy-grid-for-nav">

    
    <nav data-toggle="wy-nav-shift" class="wy-nav-side stickynav">
      <div class="wy-side-nav-search">
        <a href="../.." class="icon icon-home"> PaddleSlim Docs</a>
        <div role="search">
  <form id ="rtd-search-form" class="wy-form" action="../../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" title="Type search term here" />
  </form>
</div>
      </div>

      <div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
	<ul class="current">
	  
          
            <li class="toctree-l1">
		
    <a class="" href="../..">Home</a>
	    </li>
          
            <li class="toctree-l1">
		
59 60 61 62 63
    <a class="" href="../../model_zoo/">模型库</a>
	    </li>
          
            <li class="toctree-l1">
		
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
    <span class="caption-text">教程</span>
    <ul class="subnav">
                <li class="">
                    
    <a class="" href="../../tutorials/quant_post_demo/">离线量化</a>
                </li>
                <li class="">
                    
    <a class="" href="../../tutorials/quant_aware_demo/">量化训练</a>
                </li>
                <li class="">
                    
    <a class="" href="../../tutorials/quant_embedding_demo/">Embedding量化</a>
                </li>
                <li class="">
                    
    <a class="" href="../../tutorials/nas_demo/">SA搜索</a>
                </li>
                <li class="">
                    
84
    <a class="" href="../../search_space/">搜索空间</a>
85 86 87
                </li>
                <li class="">
                    
88 89 90 91 92 93 94
    <a class="" href="../../tutorials/distillation_demo/">知识蒸馏</a>
                </li>
    </ul>
	    </li>
          
            <li class="toctree-l1">
		
95 96 97 98 99 100 101 102
    <span class="caption-text">API</span>
    <ul class="subnav">
                <li class="">
                    
    <a class="" href="../quantization_api/">量化</a>
                </li>
                <li class=" current">
                    
103
    <a class="current" href="./">剪枝与敏感度</a>
104 105
    <ul class="subnav">
            
106
    <li class="toctree-l3"><a href="#pruner">Pruner</a></li>
107
    
108 109 110 111 112 113 114 115 116 117 118

    <li class="toctree-l3"><a href="#sensitivity">sensitivity</a></li>
    

    <li class="toctree-l3"><a href="#merge_sensitive">merge_sensitive</a></li>
    

    <li class="toctree-l3"><a href="#load_sensitivities">load_sensitivities</a></li>
    

    <li class="toctree-l3"><a href="#get_ratios_by_loss">get_ratios_by_loss</a></li>
119 120 121 122 123 124
    

    </ul>
                </li>
                <li class="">
                    
125
    <a class="" href="../analysis_api/">模型分析</a>
126 127 128
                </li>
                <li class="">
                    
129
    <a class="" href="../single_distiller_api/">知识蒸馏</a>
130 131 132 133 134 135 136
                </li>
                <li class="">
                    
    <a class="" href="../nas_api/">SA搜索</a>
                </li>
                <li class="">
                    
137 138
    <a class="" href="../../table_latency/">硬件延时评估表</a>
                </li>
139 140 141
    </ul>
	    </li>
          
142 143 144 145 146
            <li class="toctree-l1">
		
    <a class="" href="../../algo/algo/">算法原理</a>
	    </li>
          
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
        </ul>
      </div>
      &nbsp;
    </nav>

    <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">

      
      <nav class="wy-nav-top" role="navigation" aria-label="top navigation">
        <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
        <a href="../..">PaddleSlim Docs</a>
      </nav>

      
      <div class="wy-nav-content">
        <div class="rst-content">
          <div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
    <li><a href="../..">Docs</a> &raquo;</li>
    
      
        
          <li>API &raquo;</li>
        
      
    
173
    <li>剪枝与敏感度</li>
174 175
    <li class="wy-breadcrumbs-aside">
      
176
        <a href="https://github.com/PaddlePaddle/PaddleSlim/edit/master/docs/api/prune_api.md"
177 178 179 180 181 182 183 184 185
          class="icon icon-github"> Edit on GitHub</a>
      
    </li>
  </ul>
  <hr/>
</div>
          <div role="main">
            <div class="section">
              
186 187
                <h2 id="pruner">Pruner<a class="headerlink" href="#pruner" title="Permanent link">#</a></h2>
<dl>
188
<dt>paddleslim.prune.Pruner(criterion="l1_norm")<a href="https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/prune/pruner.py#L28">源代码</a></dt>
189
<dd>
190
<p>对卷积网络的通道进行一次剪裁。剪裁一个卷积层的通道,是指剪裁该卷积层输出的通道。卷积层的权重形状为<code>[output_channel, input_channel, kernel_size, kernel_size]</code>,通过剪裁该权重的第一纬度达到剪裁输出通道数的目的。</p>
191 192
</dd>
</dl>
193 194
<p><strong>参数:</strong></p>
<ul>
195
<li><strong>criterion</strong> - 评估一个卷积层内通道重要性所参考的指标。目前仅支持<code>l1_norm</code>。默认为<code>l1_norm</code></li>
196 197 198
</ul>
<p><strong>返回:</strong> 一个Pruner类的实例</p>
<p><strong>示例代码:</strong></p>
199
<div class="codehilite"><pre><span></span><span class="kn">from</span> <span class="nn">paddleslim.prune</span> <span class="kn">import</span> <span class="n">Pruner</span>
200
<span class="n">pruner</span> <span class="o">=</span> <span class="n">Pruner</span><span class="p">()</span>
201 202
</pre></div>

203
<dl>
204
<dt>paddleslim.prune.Pruner.prune(program, scope, params, ratios, place=None, lazy=False, only_graph=False, param_backup=False, param_shape_backup=False)<a href="https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/prune/pruner.py#L36">源代码</a></dt>
205
<dd>
206
<p>对目标网络的一组卷积层的权重进行裁剪。</p>
207 208
</dd>
</dl>
209 210 211
<p><strong>参数:</strong></p>
<ul>
<li>
212
<p><strong>program(paddle.fluid.Program)</strong> - 要裁剪的目标网络。更多关于Program的介绍请参考:<a href="https://www.paddlepaddle.org.cn/documentation/docs/zh/api_cn/fluid_cn/Program_cn.html#program">Program概念介绍</a></p>
213 214
</li>
<li>
215
<p><strong>scope(paddle.fluid.Scope)</strong> - 要裁剪的权重所在的<code>scope</code>,Paddle中用<code>scope</code>实例存放模型参数和运行时变量的值。Scope中的参数值会被<code>inplace</code>的裁剪。更多介绍请参考<a href="">Scope概念介绍</a></p>
216 217
</li>
<li>
218
<p><strong>params(list<str>)</strong> - 需要被裁剪的卷积层的参数的名称列表。可以通过以下方式查看模型中所有参数的名称:
219
<div class="codehilite"><pre><span></span><span class="k">for</span> <span class="n">block</span> <span class="ow">in</span> <span class="n">program</span><span class="o">.</span><span class="n">blocks</span><span class="p">:</span>
220 221
    <span class="k">for</span> <span class="n">param</span> <span class="ow">in</span> <span class="n">block</span><span class="o">.</span><span class="n">all_parameters</span><span class="p">():</span>
        <span class="nb">print</span><span class="p">(</span><span class="s2">&quot;param: </span><span class="si">{}</span><span class="s2">; shape: </span><span class="si">{}</span><span class="s2">&quot;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">param</span><span class="o">.</span><span class="n">name</span><span class="p">,</span> <span class="n">param</span><span class="o">.</span><span class="n">shape</span><span class="p">))</span>
222
</pre></div></p>
223
</li>
224
<li>
225
<p><strong>ratios(list<float>)</strong> - 用于裁剪<code>params</code>的剪切率,类型为列表。该列表长度必须与<code>params</code>的长度一致。</p>
226 227
</li>
<li>
228
<p><strong>place(paddle.fluid.Place)</strong> - 待裁剪参数所在的设备位置,可以是<code>CUDAPlace</code><code>CPUPlace</code><a href="">Place概念介绍</a></p>
229 230
</li>
<li>
231
<p><strong>lazy(bool)</strong> - <code>lazy</code>为True时,通过将指定通道的参数置零达到裁剪的目的,参数的<code>shape保持不变</code><code>lazy</code>为False时,直接将要裁的通道的参数删除,参数的<code>shape</code>会发生变化。</p>
232 233
</li>
<li>
234
<p><strong>only_graph(bool)</strong> - 是否只裁剪网络结构。在Paddle中,Program定义了网络结构,Scope存储参数的数值。一个Scope实例可以被多个Program使用,比如定义了训练网络的Program和定义了测试网络的Program是使用同一个Scope实例的。<code>only_graph</code>为True时,只对Program中定义的卷积的通道进行剪裁;<code>only_graph</code>为false时,Scope中卷积参数的数值也会被剪裁。默认为False。</p>
235 236
</li>
<li>
237
<p><strong>param_backup(bool)</strong> - 是否返回对参数值的备份。默认为False。</p>
238 239
</li>
<li>
240
<p><strong>param_shape_backup(bool)</strong> - 是否返回对参数<code>shape</code>的备份。默认为False。</p>
241 242 243 244 245
</li>
</ul>
<p><strong>返回:</strong></p>
<ul>
<li>
246
<p><strong>pruned_program(paddle.fluid.Program)</strong> - 被裁剪后的Program。</p>
247 248
</li>
<li>
249
<p><strong>param_backup(dict)</strong> - 对参数数值的备份,用于恢复Scope中的参数数值。</p>
250 251
</li>
<li>
252
<p><strong>param_shape_backup(dict)</strong> - 对参数形状的备份。</p>
253 254 255
</li>
</ul>
<p><strong>示例:</strong></p>
256
<p>点击<a href="https://aistudio.baidu.com/aistudio/projectDetail/200786">AIStudio</a>执行以下示例代码。
257
<div class="codehilite"><pre><span></span><span class="kn">import</span> <span class="nn">paddle.fluid</span> <span class="k">as</span> <span class="nn">fluid</span>
258 259
<span class="kn">from</span> <span class="nn">paddle.fluid.param_attr</span> <span class="kn">import</span> <span class="n">ParamAttr</span>
<span class="kn">from</span> <span class="nn">paddleslim.prune</span> <span class="kn">import</span> <span class="n">Pruner</span>
260

261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
<span class="k">def</span> <span class="nf">conv_bn_layer</span><span class="p">(</span><span class="nb">input</span><span class="p">,</span>
                  <span class="n">num_filters</span><span class="p">,</span>
                  <span class="n">filter_size</span><span class="p">,</span>
                  <span class="n">name</span><span class="p">,</span>
                  <span class="n">stride</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
                  <span class="n">groups</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
                  <span class="n">act</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
    <span class="n">conv</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">conv2d</span><span class="p">(</span>
        <span class="nb">input</span><span class="o">=</span><span class="nb">input</span><span class="p">,</span>
        <span class="n">num_filters</span><span class="o">=</span><span class="n">num_filters</span><span class="p">,</span>
        <span class="n">filter_size</span><span class="o">=</span><span class="n">filter_size</span><span class="p">,</span>
        <span class="n">stride</span><span class="o">=</span><span class="n">stride</span><span class="p">,</span>
        <span class="n">padding</span><span class="o">=</span><span class="p">(</span><span class="n">filter_size</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span> <span class="o">//</span> <span class="mi">2</span><span class="p">,</span>
        <span class="n">groups</span><span class="o">=</span><span class="n">groups</span><span class="p">,</span>
        <span class="n">act</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
        <span class="n">param_attr</span><span class="o">=</span><span class="n">ParamAttr</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="n">name</span> <span class="o">+</span> <span class="s2">&quot;_weights&quot;</span><span class="p">),</span>
        <span class="n">bias_attr</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
        <span class="n">name</span><span class="o">=</span><span class="n">name</span> <span class="o">+</span> <span class="s2">&quot;_out&quot;</span><span class="p">)</span>
    <span class="n">bn_name</span> <span class="o">=</span> <span class="n">name</span> <span class="o">+</span> <span class="s2">&quot;_bn&quot;</span>
    <span class="k">return</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">batch_norm</span><span class="p">(</span>
        <span class="nb">input</span><span class="o">=</span><span class="n">conv</span><span class="p">,</span>
        <span class="n">act</span><span class="o">=</span><span class="n">act</span><span class="p">,</span>
        <span class="n">name</span><span class="o">=</span><span class="n">bn_name</span> <span class="o">+</span> <span class="s1">&#39;_output&#39;</span><span class="p">,</span>
        <span class="n">param_attr</span><span class="o">=</span><span class="n">ParamAttr</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="n">bn_name</span> <span class="o">+</span> <span class="s1">&#39;_scale&#39;</span><span class="p">),</span>
        <span class="n">bias_attr</span><span class="o">=</span><span class="n">ParamAttr</span><span class="p">(</span><span class="n">bn_name</span> <span class="o">+</span> <span class="s1">&#39;_offset&#39;</span><span class="p">),</span>
        <span class="n">moving_mean_name</span><span class="o">=</span><span class="n">bn_name</span> <span class="o">+</span> <span class="s1">&#39;_mean&#39;</span><span class="p">,</span>
        <span class="n">moving_variance_name</span><span class="o">=</span><span class="n">bn_name</span> <span class="o">+</span> <span class="s1">&#39;_variance&#39;</span><span class="p">,</span> <span class="p">)</span>
288

289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
<span class="n">main_program</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">Program</span><span class="p">()</span>
<span class="n">startup_program</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">Program</span><span class="p">()</span>
<span class="c1">#   X       X              O       X              O</span>
<span class="c1"># conv1--&gt;conv2--&gt;sum1--&gt;conv3--&gt;conv4--&gt;sum2--&gt;conv5--&gt;conv6</span>
<span class="c1">#     |            ^ |                    ^</span>
<span class="c1">#     |____________| |____________________|</span>
<span class="c1">#</span>
<span class="c1"># X: prune output channels</span>
<span class="c1"># O: prune input channels</span>
<span class="k">with</span> <span class="n">fluid</span><span class="o">.</span><span class="n">program_guard</span><span class="p">(</span><span class="n">main_program</span><span class="p">,</span> <span class="n">startup_program</span><span class="p">):</span>
    <span class="nb">input</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s2">&quot;image&quot;</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="kc">None</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">16</span><span class="p">,</span> <span class="mi">16</span><span class="p">])</span>
    <span class="n">conv1</span> <span class="o">=</span> <span class="n">conv_bn_layer</span><span class="p">(</span><span class="nb">input</span><span class="p">,</span> <span class="mi">8</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="s2">&quot;conv1&quot;</span><span class="p">)</span>
    <span class="n">conv2</span> <span class="o">=</span> <span class="n">conv_bn_layer</span><span class="p">(</span><span class="n">conv1</span><span class="p">,</span> <span class="mi">8</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="s2">&quot;conv2&quot;</span><span class="p">)</span>
    <span class="n">sum1</span> <span class="o">=</span> <span class="n">conv1</span> <span class="o">+</span> <span class="n">conv2</span>
    <span class="n">conv3</span> <span class="o">=</span> <span class="n">conv_bn_layer</span><span class="p">(</span><span class="n">sum1</span><span class="p">,</span> <span class="mi">8</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="s2">&quot;conv3&quot;</span><span class="p">)</span>
    <span class="n">conv4</span> <span class="o">=</span> <span class="n">conv_bn_layer</span><span class="p">(</span><span class="n">conv3</span><span class="p">,</span> <span class="mi">8</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="s2">&quot;conv4&quot;</span><span class="p">)</span>
    <span class="n">sum2</span> <span class="o">=</span> <span class="n">conv4</span> <span class="o">+</span> <span class="n">sum1</span>
    <span class="n">conv5</span> <span class="o">=</span> <span class="n">conv_bn_layer</span><span class="p">(</span><span class="n">sum2</span><span class="p">,</span> <span class="mi">8</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="s2">&quot;conv5&quot;</span><span class="p">)</span>
    <span class="n">conv6</span> <span class="o">=</span> <span class="n">conv_bn_layer</span><span class="p">(</span><span class="n">conv5</span><span class="p">,</span> <span class="mi">8</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="s2">&quot;conv6&quot;</span><span class="p">)</span>
308

309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
<span class="n">place</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">CPUPlace</span><span class="p">()</span>
<span class="n">exe</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">Executor</span><span class="p">(</span><span class="n">place</span><span class="p">)</span>
<span class="n">scope</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">Scope</span><span class="p">()</span>
<span class="n">exe</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">startup_program</span><span class="p">,</span> <span class="n">scope</span><span class="o">=</span><span class="n">scope</span><span class="p">)</span>
<span class="n">pruner</span> <span class="o">=</span> <span class="n">Pruner</span><span class="p">()</span>
<span class="n">main_program</span><span class="p">,</span> <span class="n">_</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="n">pruner</span><span class="o">.</span><span class="n">prune</span><span class="p">(</span>
    <span class="n">main_program</span><span class="p">,</span>
    <span class="n">scope</span><span class="p">,</span>
    <span class="n">params</span><span class="o">=</span><span class="p">[</span><span class="s2">&quot;conv4_weights&quot;</span><span class="p">],</span>
    <span class="n">ratios</span><span class="o">=</span><span class="p">[</span><span class="mf">0.5</span><span class="p">],</span>
    <span class="n">place</span><span class="o">=</span><span class="n">place</span><span class="p">,</span>
    <span class="n">lazy</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
    <span class="n">only_graph</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
    <span class="n">param_backup</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
    <span class="n">param_shape_backup</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
324

325 326 327
<span class="k">for</span> <span class="n">param</span> <span class="ow">in</span> <span class="n">main_program</span><span class="o">.</span><span class="n">global_block</span><span class="p">()</span><span class="o">.</span><span class="n">all_parameters</span><span class="p">():</span>
    <span class="k">if</span> <span class="s2">&quot;weights&quot;</span> <span class="ow">in</span> <span class="n">param</span><span class="o">.</span><span class="n">name</span><span class="p">:</span>
        <span class="nb">print</span><span class="p">(</span><span class="s2">&quot;param name: </span><span class="si">{}</span><span class="s2">; param shape: </span><span class="si">{}</span><span class="s2">&quot;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">param</span><span class="o">.</span><span class="n">name</span><span class="p">,</span> <span class="n">param</span><span class="o">.</span><span class="n">shape</span><span class="p">))</span>
328
</pre></div></p>
329 330
<hr />
<h2 id="sensitivity">sensitivity<a class="headerlink" href="#sensitivity" title="Permanent link">#</a></h2>
331
<dl>
332
<dt>paddleslim.prune.sensitivity(program, place, param_names, eval_func, sensitivities_file=None, pruned_ratios=None) <a href="https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/prune/sensitive.py#L34">源代码</a></dt>
333
<dd>
334
<p>计算网络中每个卷积层的敏感度。每个卷积层的敏感度信息统计方法为:依次剪掉当前卷积层不同比例的输出通道数,在测试集上计算剪裁后的精度损失。得到敏感度信息后,可以通过观察或其它方式确定每层卷积的剪裁率。</p>
335 336
</dd>
</dl>
337 338 339
<p><strong>参数:</strong></p>
<ul>
<li>
340
<p><strong>program(paddle.fluid.Program)</strong> - 待评估的目标网络。更多关于Program的介绍请参考:<a href="https://www.paddlepaddle.org.cn/documentation/docs/zh/api_cn/fluid_cn/Program_cn.html#program">Program概念介绍</a></p>
341 342
</li>
<li>
343
<p><strong>place(paddle.fluid.Place)</strong> - 待分析的参数所在的设备位置,可以是<code>CUDAPlace</code><code>CPUPlace</code><a href="">Place概念介绍</a></p>
344 345
</li>
<li>
346
<p><strong>param_names(list<str>)</strong> - 待分析的卷积层的参数的名称列表。可以通过以下方式查看模型中所有参数的名称:</p>
347 348
</li>
</ul>
349
<div class="codehilite"><pre><span></span><span class="k">for</span> <span class="n">block</span> <span class="ow">in</span> <span class="n">program</span><span class="o">.</span><span class="n">blocks</span><span class="p">:</span>
350 351
    <span class="k">for</span> <span class="n">param</span> <span class="ow">in</span> <span class="n">block</span><span class="o">.</span><span class="n">all_parameters</span><span class="p">():</span>
        <span class="nb">print</span><span class="p">(</span><span class="s2">&quot;param: </span><span class="si">{}</span><span class="s2">; shape: </span><span class="si">{}</span><span class="s2">&quot;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">param</span><span class="o">.</span><span class="n">name</span><span class="p">,</span> <span class="n">param</span><span class="o">.</span><span class="n">shape</span><span class="p">))</span>
352 353 354 355
</pre></div>

<ul>
<li>
356
<p><strong>eval_func(function)</strong> - 用于评估裁剪后模型效果的回调函数。该回调函数接受被裁剪后的<code>program</code>为参数,返回一个表示当前program的精度,用以计算当前裁剪带来的精度损失。</p>
357 358
</li>
<li>
359
<p><strong>sensitivities_file(str)</strong> - 保存敏感度信息的本地文件系统的文件。在敏感度计算过程中,会持续将新计算出的敏感度信息追加到该文件中。重启任务后,文件中已有敏感度信息不会被重复计算。该文件可以用<code>pickle</code>加载。</p>
360 361
</li>
<li>
362
<p><strong>pruned_ratios(list<float>)</strong> - 计算卷积层敏感度信息时,依次剪掉的通道数比例。默认为[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]。</p>
363 364 365 366
</li>
</ul>
<p><strong>返回:</strong></p>
<ul>
367
<li><strong>sensitivities(dict)</strong> - 存放敏感度信息的dict,其格式为:</li>
368
</ul>
369
<div class="codehilite"><pre><span></span><span class="p">{</span><span class="s2">&quot;weight_0&quot;</span><span class="p">:</span>
370 371 372 373 374 375 376 377
   <span class="p">{</span><span class="mf">0.1</span><span class="p">:</span> <span class="mf">0.22</span><span class="p">,</span>
    <span class="mf">0.2</span><span class="p">:</span> <span class="mf">0.33</span>
   <span class="p">},</span>
 <span class="s2">&quot;weight_1&quot;</span><span class="p">:</span>
   <span class="p">{</span><span class="mf">0.1</span><span class="p">:</span> <span class="mf">0.21</span><span class="p">,</span>
    <span class="mf">0.2</span><span class="p">:</span> <span class="mf">0.4</span>
   <span class="p">}</span>
<span class="p">}</span>
378 379 380 381 382
</pre></div>

<p>其中,<code>weight_0</code>是卷积层参数的名称,sensitivities['weight_0']的<code>value</code>为剪裁比例,<code>value</code>为精度损失的比例。</p>
<p><strong>示例:</strong></p>
<p>点击<a href="https://aistudio.baidu.com/aistudio/projectdetail/201401">AIStudio</a>运行以下示例代码。</p>
383
<div class="codehilite"><pre><span></span><span class="kn">import</span> <span class="nn">paddle</span>
384 385 386 387 388
<span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
<span class="kn">import</span> <span class="nn">paddle.fluid</span> <span class="k">as</span> <span class="nn">fluid</span>
<span class="kn">from</span> <span class="nn">paddle.fluid.param_attr</span> <span class="kn">import</span> <span class="n">ParamAttr</span>
<span class="kn">from</span> <span class="nn">paddleslim.prune</span> <span class="kn">import</span> <span class="n">sensitivity</span>
<span class="kn">import</span> <span class="nn">paddle.dataset.mnist</span> <span class="k">as</span> <span class="nn">reader</span>
389

390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
<span class="k">def</span> <span class="nf">conv_bn_layer</span><span class="p">(</span><span class="nb">input</span><span class="p">,</span>
                  <span class="n">num_filters</span><span class="p">,</span>
                  <span class="n">filter_size</span><span class="p">,</span>
                  <span class="n">name</span><span class="p">,</span>
                  <span class="n">stride</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
                  <span class="n">groups</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
                  <span class="n">act</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
    <span class="n">conv</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">conv2d</span><span class="p">(</span>
        <span class="nb">input</span><span class="o">=</span><span class="nb">input</span><span class="p">,</span>
        <span class="n">num_filters</span><span class="o">=</span><span class="n">num_filters</span><span class="p">,</span>
        <span class="n">filter_size</span><span class="o">=</span><span class="n">filter_size</span><span class="p">,</span>
        <span class="n">stride</span><span class="o">=</span><span class="n">stride</span><span class="p">,</span>
        <span class="n">padding</span><span class="o">=</span><span class="p">(</span><span class="n">filter_size</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span> <span class="o">//</span> <span class="mi">2</span><span class="p">,</span>
        <span class="n">groups</span><span class="o">=</span><span class="n">groups</span><span class="p">,</span>
        <span class="n">act</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
        <span class="n">param_attr</span><span class="o">=</span><span class="n">ParamAttr</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="n">name</span> <span class="o">+</span> <span class="s2">&quot;_weights&quot;</span><span class="p">),</span>
        <span class="n">bias_attr</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span>
        <span class="n">name</span><span class="o">=</span><span class="n">name</span> <span class="o">+</span> <span class="s2">&quot;_out&quot;</span><span class="p">)</span>
    <span class="n">bn_name</span> <span class="o">=</span> <span class="n">name</span> <span class="o">+</span> <span class="s2">&quot;_bn&quot;</span>
    <span class="k">return</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">batch_norm</span><span class="p">(</span>
        <span class="nb">input</span><span class="o">=</span><span class="n">conv</span><span class="p">,</span>
        <span class="n">act</span><span class="o">=</span><span class="n">act</span><span class="p">,</span>
        <span class="n">name</span><span class="o">=</span><span class="n">bn_name</span> <span class="o">+</span> <span class="s1">&#39;_output&#39;</span><span class="p">,</span>
        <span class="n">param_attr</span><span class="o">=</span><span class="n">ParamAttr</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="n">bn_name</span> <span class="o">+</span> <span class="s1">&#39;_scale&#39;</span><span class="p">),</span>
        <span class="n">bias_attr</span><span class="o">=</span><span class="n">ParamAttr</span><span class="p">(</span><span class="n">bn_name</span> <span class="o">+</span> <span class="s1">&#39;_offset&#39;</span><span class="p">),</span>
        <span class="n">moving_mean_name</span><span class="o">=</span><span class="n">bn_name</span> <span class="o">+</span> <span class="s1">&#39;_mean&#39;</span><span class="p">,</span>
        <span class="n">moving_variance_name</span><span class="o">=</span><span class="n">bn_name</span> <span class="o">+</span> <span class="s1">&#39;_variance&#39;</span><span class="p">,</span> <span class="p">)</span>
417

418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
<span class="n">main_program</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">Program</span><span class="p">()</span>
<span class="n">startup_program</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">Program</span><span class="p">()</span>
<span class="c1">#   X       X              O       X              O</span>
<span class="c1"># conv1--&gt;conv2--&gt;sum1--&gt;conv3--&gt;conv4--&gt;sum2--&gt;conv5--&gt;conv6</span>
<span class="c1">#     |            ^ |                    ^</span>
<span class="c1">#     |____________| |____________________|</span>
<span class="c1">#</span>
<span class="c1"># X: prune output channels</span>
<span class="c1"># O: prune input channels</span>
<span class="n">image_shape</span> <span class="o">=</span> <span class="p">[</span><span class="mi">1</span><span class="p">,</span><span class="mi">28</span><span class="p">,</span><span class="mi">28</span><span class="p">]</span>
<span class="k">with</span> <span class="n">fluid</span><span class="o">.</span><span class="n">program_guard</span><span class="p">(</span><span class="n">main_program</span><span class="p">,</span> <span class="n">startup_program</span><span class="p">):</span>
    <span class="n">image</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;image&#39;</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="kc">None</span><span class="p">]</span><span class="o">+</span><span class="n">image_shape</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">)</span>
    <span class="n">label</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;label&#39;</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="kc">None</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span> <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;int64&#39;</span><span class="p">)</span>  
    <span class="n">conv1</span> <span class="o">=</span> <span class="n">conv_bn_layer</span><span class="p">(</span><span class="n">image</span><span class="p">,</span> <span class="mi">8</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="s2">&quot;conv1&quot;</span><span class="p">)</span>
    <span class="n">conv2</span> <span class="o">=</span> <span class="n">conv_bn_layer</span><span class="p">(</span><span class="n">conv1</span><span class="p">,</span> <span class="mi">8</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="s2">&quot;conv2&quot;</span><span class="p">)</span>
    <span class="n">sum1</span> <span class="o">=</span> <span class="n">conv1</span> <span class="o">+</span> <span class="n">conv2</span>
    <span class="n">conv3</span> <span class="o">=</span> <span class="n">conv_bn_layer</span><span class="p">(</span><span class="n">sum1</span><span class="p">,</span> <span class="mi">8</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="s2">&quot;conv3&quot;</span><span class="p">)</span>
    <span class="n">conv4</span> <span class="o">=</span> <span class="n">conv_bn_layer</span><span class="p">(</span><span class="n">conv3</span><span class="p">,</span> <span class="mi">8</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="s2">&quot;conv4&quot;</span><span class="p">)</span>
    <span class="n">sum2</span> <span class="o">=</span> <span class="n">conv4</span> <span class="o">+</span> <span class="n">sum1</span>
    <span class="n">conv5</span> <span class="o">=</span> <span class="n">conv_bn_layer</span><span class="p">(</span><span class="n">sum2</span><span class="p">,</span> <span class="mi">8</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="s2">&quot;conv5&quot;</span><span class="p">)</span>
    <span class="n">conv6</span> <span class="o">=</span> <span class="n">conv_bn_layer</span><span class="p">(</span><span class="n">conv5</span><span class="p">,</span> <span class="mi">8</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="s2">&quot;conv6&quot;</span><span class="p">)</span>
    <span class="n">out</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span><span class="n">conv6</span><span class="p">,</span> <span class="n">size</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">act</span><span class="o">=</span><span class="s2">&quot;softmax&quot;</span><span class="p">)</span>
<span class="c1">#    cost = fluid.layers.cross_entropy(input=out, label=label)</span>
<span class="c1">#    avg_cost = fluid.layers.mean(x=cost)</span>
    <span class="n">acc_top1</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">layers</span><span class="o">.</span><span class="n">accuracy</span><span class="p">(</span><span class="nb">input</span><span class="o">=</span><span class="n">out</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="n">label</span><span class="p">,</span> <span class="n">k</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="c1">#    acc_top5 = fluid.layers.accuracy(input=out, label=label, k=5)</span>
444 445


446 447 448
<span class="n">place</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">CPUPlace</span><span class="p">()</span>
<span class="n">exe</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">Executor</span><span class="p">(</span><span class="n">place</span><span class="p">)</span>
<span class="n">exe</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">startup_program</span><span class="p">)</span>
449

450 451 452
<span class="n">val_reader</span> <span class="o">=</span> <span class="n">paddle</span><span class="o">.</span><span class="n">batch</span><span class="p">(</span><span class="n">reader</span><span class="o">.</span><span class="n">test</span><span class="p">(),</span> <span class="n">batch_size</span><span class="o">=</span><span class="mi">128</span><span class="p">)</span>
<span class="n">val_feeder</span> <span class="o">=</span> <span class="n">feeder</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">DataFeeder</span><span class="p">(</span>
        <span class="p">[</span><span class="n">image</span><span class="p">,</span> <span class="n">label</span><span class="p">],</span> <span class="n">place</span><span class="p">,</span> <span class="n">program</span><span class="o">=</span><span class="n">main_program</span><span class="p">)</span>
453

454
<span class="k">def</span> <span class="nf">eval_func</span><span class="p">(</span><span class="n">program</span><span class="p">):</span>
455

456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
    <span class="n">acc_top1_ns</span> <span class="o">=</span> <span class="p">[]</span>
    <span class="k">for</span> <span class="n">data</span> <span class="ow">in</span> <span class="n">val_reader</span><span class="p">():</span>
        <span class="n">acc_top1_n</span> <span class="o">=</span> <span class="n">exe</span><span class="o">.</span><span class="n">run</span><span class="p">(</span><span class="n">program</span><span class="p">,</span>
                             <span class="n">feed</span><span class="o">=</span><span class="n">val_feeder</span><span class="o">.</span><span class="n">feed</span><span class="p">(</span><span class="n">data</span><span class="p">),</span>
                             <span class="n">fetch_list</span><span class="o">=</span><span class="p">[</span><span class="n">acc_top1</span><span class="o">.</span><span class="n">name</span><span class="p">])</span>
        <span class="n">acc_top1_ns</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="n">acc_top1_n</span><span class="p">))</span>
    <span class="k">return</span> <span class="n">np</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="n">acc_top1_ns</span><span class="p">)</span>
<span class="n">param_names</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">param</span> <span class="ow">in</span> <span class="n">main_program</span><span class="o">.</span><span class="n">global_block</span><span class="p">()</span><span class="o">.</span><span class="n">all_parameters</span><span class="p">():</span>
    <span class="k">if</span> <span class="s2">&quot;weights&quot;</span> <span class="ow">in</span> <span class="n">param</span><span class="o">.</span><span class="n">name</span><span class="p">:</span>
        <span class="n">param_names</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">param</span><span class="o">.</span><span class="n">name</span><span class="p">)</span>
<span class="n">sensitivities</span> <span class="o">=</span> <span class="n">sensitivity</span><span class="p">(</span><span class="n">main_program</span><span class="p">,</span>
                            <span class="n">place</span><span class="p">,</span>
                            <span class="n">param_names</span><span class="p">,</span>
                            <span class="n">eval_func</span><span class="p">,</span>
                            <span class="n">sensitivities_file</span><span class="o">=</span><span class="s2">&quot;./sensitive.data&quot;</span><span class="p">,</span>
                            <span class="n">pruned_ratios</span><span class="o">=</span><span class="p">[</span><span class="mf">0.1</span><span class="p">,</span> <span class="mf">0.2</span><span class="p">,</span> <span class="mf">0.3</span><span class="p">])</span>
<span class="nb">print</span><span class="p">(</span><span class="n">sensitivities</span><span class="p">)</span>
474 475 476
</pre></div>

<h2 id="merge_sensitive">merge_sensitive<a class="headerlink" href="#merge_sensitive" title="Permanent link">#</a></h2>
477
<dl>
478
<dt>paddleslim.prune.merge_sensitive(sensitivities)<a href="https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/prune/sensitive.py#L161">源代码</a></dt>
479
<dd>
480
<p>合并多个敏感度信息。</p>
481 482
</dd>
</dl>
483 484
<p>参数:</p>
<ul>
485
<li><strong>sensitivities(list<dict> | list<str>)</strong> - 待合并的敏感度信息,可以是字典的列表,或者是存放敏感度信息的文件的路径列表。</li>
486 487 488
</ul>
<p>返回:</p>
<ul>
489
<li><strong>sensitivities(dict)</strong> - 合并后的敏感度信息。其格式为:</li>
490
</ul>
491
<div class="codehilite"><pre><span></span><span class="o">{</span><span class="s2">&quot;weight_0&quot;</span>:
492 493 494 495 496 497 498 499
   <span class="o">{</span><span class="m">0</span>.1: <span class="m">0</span>.22,
    <span class="m">0</span>.2: <span class="m">0</span>.33
   <span class="o">}</span>,
 <span class="s2">&quot;weight_1&quot;</span>:
   <span class="o">{</span><span class="m">0</span>.1: <span class="m">0</span>.21,
    <span class="m">0</span>.2: <span class="m">0</span>.4
   <span class="o">}</span>
<span class="o">}</span>
500 501 502 503
</pre></div>

<p>其中,<code>weight_0</code>是卷积层参数的名称,sensitivities['weight_0']的<code>value</code>为剪裁比例,<code>value</code>为精度损失的比例。</p>
<p>示例:</p>
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
<div class="codehilite"><pre><span></span><span class="kn">from</span> <span class="nn">paddleslim.prune</span> <span class="kn">import</span> <span class="n">merge_sensitive</span>
<span class="n">sen0</span> <span class="o">=</span> <span class="p">{</span><span class="s2">&quot;weight_0&quot;</span><span class="p">:</span>
   <span class="p">{</span><span class="mf">0.1</span><span class="p">:</span> <span class="mf">0.22</span><span class="p">,</span>
    <span class="mf">0.2</span><span class="p">:</span> <span class="mf">0.33</span>
   <span class="p">},</span>
 <span class="s2">&quot;weight_1&quot;</span><span class="p">:</span>
   <span class="p">{</span><span class="mf">0.1</span><span class="p">:</span> <span class="mf">0.21</span><span class="p">,</span>
    <span class="mf">0.2</span><span class="p">:</span> <span class="mf">0.4</span>
   <span class="p">}</span>
<span class="p">}</span>
<span class="n">sen1</span> <span class="o">=</span> <span class="p">{</span><span class="s2">&quot;weight_0&quot;</span><span class="p">:</span>
   <span class="p">{</span><span class="mf">0.3</span><span class="p">:</span> <span class="mf">0.41</span><span class="p">,</span>
   <span class="p">},</span>
 <span class="s2">&quot;weight_2&quot;</span><span class="p">:</span>
   <span class="p">{</span><span class="mf">0.1</span><span class="p">:</span> <span class="mf">0.10</span><span class="p">,</span>
    <span class="mf">0.2</span><span class="p">:</span> <span class="mf">0.35</span>
   <span class="p">}</span>
<span class="p">}</span>
<span class="n">sensitivities</span> <span class="o">=</span> <span class="n">merge_sensitive</span><span class="p">([</span><span class="n">sen0</span><span class="p">,</span> <span class="n">sen1</span><span class="p">])</span>
<span class="k">print</span><span class="p">(</span><span class="n">sensitivities</span><span class="p">)</span>
</pre></div>

526
<h2 id="load_sensitivities">load_sensitivities<a class="headerlink" href="#load_sensitivities" title="Permanent link">#</a></h2>
527
<dl>
528
<dt>paddleslim.prune.load_sensitivities(sensitivities_file)<a href="https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/prune/sensitive.py#L184">源代码</a></dt>
529
<dd>
530
<p>从文件中加载敏感度信息。</p>
531 532
</dd>
</dl>
533 534
<p>参数:</p>
<ul>
535
<li><strong>sensitivities_file(str)</strong> - 存放敏感度信息的本地文件.</li>
536 537 538
</ul>
<p>返回:</p>
<ul>
539
<li><strong>sensitivities(dict)</strong> - 敏感度信息。</li>
540 541
</ul>
<p>示例:</p>
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
<div class="codehilite"><pre><span></span><span class="kn">import</span> <span class="nn">pickle</span>
<span class="kn">from</span> <span class="nn">paddleslim.prune</span> <span class="kn">import</span> <span class="n">load_sensitivities</span>
<span class="n">sen</span> <span class="o">=</span> <span class="p">{</span><span class="s2">&quot;weight_0&quot;</span><span class="p">:</span>
   <span class="p">{</span><span class="mf">0.1</span><span class="p">:</span> <span class="mf">0.22</span><span class="p">,</span>
    <span class="mf">0.2</span><span class="p">:</span> <span class="mf">0.33</span>
   <span class="p">},</span>
 <span class="s2">&quot;weight_1&quot;</span><span class="p">:</span>
   <span class="p">{</span><span class="mf">0.1</span><span class="p">:</span> <span class="mf">0.21</span><span class="p">,</span>
    <span class="mf">0.2</span><span class="p">:</span> <span class="mf">0.4</span>
   <span class="p">}</span>
<span class="p">}</span>
<span class="n">sensitivities_file</span> <span class="o">=</span> <span class="s2">&quot;sensitive_api_demo.data&quot;</span>
<span class="k">with</span> <span class="nb">open</span><span class="p">(</span><span class="n">sensitivities_file</span><span class="p">,</span> <span class="s1">&#39;w&#39;</span><span class="p">)</span> <span class="k">as</span> <span class="n">f</span><span class="p">:</span>
    <span class="n">pickle</span><span class="o">.</span><span class="n">dump</span><span class="p">(</span><span class="n">sen</span><span class="p">,</span> <span class="n">f</span><span class="p">)</span>
<span class="n">sensitivities</span> <span class="o">=</span> <span class="n">load_sensitivities</span><span class="p">(</span><span class="n">sensitivities_file</span><span class="p">)</span>
<span class="k">print</span><span class="p">(</span><span class="n">sensitivities</span><span class="p">)</span>
</pre></div>

560 561
<h2 id="get_ratios_by_loss">get_ratios_by_loss<a class="headerlink" href="#get_ratios_by_loss" title="Permanent link">#</a></h2>
<dl>
562
<dt>paddleslim.prune.get_ratios_by_loss(sensitivities, loss)<a href="https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/prune/sensitive.py#L206">源代码</a></dt>
563
<dd>
564
<p>根据敏感度和精度损失阈值计算出一组剪切率。对于参数<code>w</code>, 其剪裁率为使精度损失低于<code>loss</code>的最大剪裁率。</p>
565 566
</dd>
</dl>
567 568 569
<p>参数:</p>
<ul>
<li>
570
<p><strong>sensitivities(dict)</strong> - 敏感度信息。</p>
571 572
</li>
<li>
573
<p><strong>loss</strong> - 精度损失阈值。</p>
574 575 576 577
</li>
</ul>
<p>返回:</p>
<ul>
578
<li><strong>ratios(dict)</strong> - 一组剪切率。<code>key</code>是待剪裁参数的名称。<code>value</code>是对应参数的剪裁率。</li>
579
</ul>
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
<p>示例:</p>
<div class="codehilite"><pre><span></span><span class="kn">from</span> <span class="nn">paddleslim.prune</span> <span class="kn">import</span> <span class="n">get_ratios_by_loss</span>
<span class="n">sen</span> <span class="o">=</span> <span class="p">{</span><span class="s2">&quot;weight_0&quot;</span><span class="p">:</span>
   <span class="p">{</span><span class="mf">0.1</span><span class="p">:</span> <span class="mf">0.22</span><span class="p">,</span>
    <span class="mf">0.2</span><span class="p">:</span> <span class="mf">0.33</span>
   <span class="p">},</span>
 <span class="s2">&quot;weight_1&quot;</span><span class="p">:</span>
   <span class="p">{</span><span class="mf">0.1</span><span class="p">:</span> <span class="mf">0.21</span><span class="p">,</span>
    <span class="mf">0.2</span><span class="p">:</span> <span class="mf">0.4</span>
   <span class="p">}</span>
<span class="p">}</span>

<span class="n">ratios</span> <span class="o">=</span> <span class="n">get_ratios_by_loss</span><span class="p">(</span><span class="n">sen</span><span class="p">,</span> <span class="mf">0.3</span><span class="p">)</span>
<span class="k">print</span><span class="p">(</span><span class="n">ratios</span><span class="p">)</span>
</pre></div>
595 596 597 598 599 600 601
              
            </div>
          </div>
          <footer>
  
    <div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
      
602
        <a href="../analysis_api/" class="btn btn-neutral float-right" title="模型分析">Next <span class="icon icon-circle-arrow-right"></span></a>
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
      
      
        <a href="../quantization_api/" class="btn btn-neutral" title="量化"><span class="icon icon-circle-arrow-left"></span> Previous</a>
      
    </div>
  

  <hr/>

  <div role="contentinfo">
    <!-- Copyright etc -->
    
  </div>

  Built with <a href="http://www.mkdocs.org">MkDocs</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
      
        </div>
      </div>

    </section>

  </div>

  <div class="rst-versions" role="note" style="cursor: pointer">
    <span class="rst-current-version" data-toggle="rst-current-version">
      
          <a href="https://github.com/PaddlePaddle/PaddleSlim/" class="fa fa-github" style="float: left; color: #fcfcfc"> GitHub</a>
      
      
        <span><a href="../quantization_api/" style="color: #fcfcfc;">&laquo; Previous</a></span>
      
      
        <span style="margin-left: 15px"><a href="../analysis_api/" style="color: #fcfcfc">Next &raquo;</a></span>
      
    </span>
</div>
    <script>var base_url = '../..';</script>
    <script src="../../js/theme.js" defer></script>
      <script src="../../mathjax-config.js" defer></script>
643
      <script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML" defer></script>
644 645 646 647
      <script src="../../search/main.js" defer></script>

</body>
</html>