infer.py 9.1 KB
Newer Older
S
slf12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
import argparse
import sys
import time
import math
import unittest
import contextlib
import numpy as np
import six
import paddle
import net
import utils
sys.path.append(sys.path[0] + "/../../../")
from paddleslim.quant import quant_embedding


def parse_args():
    parser = argparse.ArgumentParser("PaddlePaddle Word2vec infer example")
    parser.add_argument(
        '--dict_path',
        type=str,
        default='./data/data_c/1-billion_dict_word_to_id_',
        help="The path of dic")
    parser.add_argument(
        '--infer_epoch',
        action='store_true',
        required=False,
        default=False,
        help='infer by epoch')
    parser.add_argument(
        '--infer_step',
        action='store_true',
        required=False,
        default=False,
        help='infer by step')
    parser.add_argument(
        '--test_dir', type=str, default='test_data', help='test file address')
    parser.add_argument(
        '--print_step', type=int, default='500000', help='print step')
    parser.add_argument(
        '--start_index', type=int, default='0', help='start index')
    parser.add_argument(
        '--start_batch', type=int, default='1', help='start index')
    parser.add_argument(
        '--end_batch', type=int, default='13', help='start index')
    parser.add_argument(
        '--last_index', type=int, default='100', help='last index')
    parser.add_argument(
        '--model_dir', type=str, default='model', help='model dir')
    parser.add_argument(
        '--use_cuda', type=int, default='0', help='whether use cuda')
    parser.add_argument(
        '--batch_size', type=int, default='5', help='batch_size')
53
    parser.add_argument('--emb_size', type=int, default='64', help='batch_size')
S
slf12 已提交
54 55 56 57
    parser.add_argument(
        '--emb_quant',
        type=bool,
        default=False,
S
slf12 已提交
58
        help='whether to quant embedding parameter')
S
slf12 已提交
59 60 61 62 63 64
    args = parser.parse_args()
    return args


def infer_epoch(args, vocab_size, test_reader, use_cuda, i2w):
    """ inference function """
B
Bai Yifan 已提交
65 66
    place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
    exe = paddle.static.Executor(place)
S
slf12 已提交
67 68
    emb_size = args.emb_size
    batch_size = args.batch_size
B
Bai Yifan 已提交
69 70 71
    with paddle.static.scope_guard(paddle.static.Scope()):
        main_program = paddle.static.Program()
        with paddle.static.program_guard(main_program):
S
slf12 已提交
72 73 74 75
            values, pred = net.infer_network(vocab_size, emb_size)
            for epoch in range(start_index, last_index + 1):
                copy_program = main_program.clone()
                model_path = model_dir + "/pass-" + str(epoch)
B
Bai Yifan 已提交
76
                paddle.static.load(copy_program, model_path, exe)
S
slf12 已提交
77
                if args.emb_quant:
L
Liufang Sang 已提交
78 79 80 81 82 83
                    config = {
                        'quantize_op_types': 'lookup_table',
                        'lookup_table': {
                            'quantize_type': 'abs_max'
                        },
                    }
S
slf12 已提交
84
                    copy_program = quant_embedding(copy_program, place, config)
B
Bai Yifan 已提交
85 86
                    paddle.static.save(copy_program,
                                       './output_quant/pass-' + str(epoch))
S
slf12 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137

                accum_num = 0
                accum_num_sum = 0.0
                t0 = time.time()
                step_id = 0
                for data in test_reader():
                    step_id += 1
                    b_size = len([dat[0] for dat in data])
                    wa = np.array(
                        [dat[0] for dat in data]).astype("int64").reshape(
                            b_size, 1)
                    wb = np.array(
                        [dat[1] for dat in data]).astype("int64").reshape(
                            b_size, 1)
                    wc = np.array(
                        [dat[2] for dat in data]).astype("int64").reshape(
                            b_size, 1)

                    label = [dat[3] for dat in data]
                    input_word = [dat[4] for dat in data]
                    para = exe.run(copy_program,
                                   feed={
                                       "analogy_a": wa,
                                       "analogy_b": wb,
                                       "analogy_c": wc,
                                       "all_label":
                                       np.arange(vocab_size).reshape(
                                           vocab_size, 1).astype("int64"),
                                   },
                                   fetch_list=[pred.name, values],
                                   return_numpy=False)
                    pre = np.array(para[0])
                    val = np.array(para[1])
                    for ii in range(len(label)):
                        top4 = pre[ii]
                        accum_num_sum += 1
                        for idx in top4:
                            if int(idx) in input_word[ii]:
                                continue
                            if int(idx) == int(label[ii][0]):
                                accum_num += 1
                            break
                    if step_id % 1 == 0:
                        print("step:%d %d " % (step_id, accum_num))

                print("epoch:%d \t acc:%.3f " %
                      (epoch, 1.0 * accum_num / accum_num_sum))


def infer_step(args, vocab_size, test_reader, use_cuda, i2w):
    """ inference function """
B
Bai Yifan 已提交
138 139
    place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
    exe = paddle.static.Executor(place)
S
slf12 已提交
140 141
    emb_size = args.emb_size
    batch_size = args.batch_size
B
Bai Yifan 已提交
142 143 144
    with paddle.static.scope_guard(paddle.static.Scope()):
        main_program = paddle.static.Program()
        with paddle.static.program_guard(main_program):
S
slf12 已提交
145 146 147 148 149 150
            values, pred = net.infer_network(vocab_size, emb_size)
            for epoch in range(start_index, last_index + 1):
                for batchid in range(args.start_batch, args.end_batch):
                    copy_program = main_program.clone()
                    model_path = model_dir + "/pass-" + str(epoch) + (
                        '/batch-' + str(batchid * args.print_step))
B
Bai Yifan 已提交
151
                    paddle.static.load(copy_program, model_path, exe)
S
slf12 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
                    accum_num = 0
                    accum_num_sum = 0.0
                    t0 = time.time()
                    step_id = 0
                    for data in test_reader():
                        step_id += 1
                        b_size = len([dat[0] for dat in data])
                        wa = np.array(
                            [dat[0] for dat in data]).astype("int64").reshape(
                                b_size, 1)
                        wb = np.array(
                            [dat[1] for dat in data]).astype("int64").reshape(
                                b_size, 1)
                        wc = np.array(
                            [dat[2] for dat in data]).astype("int64").reshape(
                                b_size, 1)

                        label = [dat[3] for dat in data]
                        input_word = [dat[4] for dat in data]
                        para = exe.run(
                            copy_program,
                            feed={
                                "analogy_a": wa,
                                "analogy_b": wb,
                                "analogy_c": wc,
                                "all_label":
                                np.arange(vocab_size).reshape(vocab_size, 1),
                            },
                            fetch_list=[pred.name, values],
                            return_numpy=False)
                        pre = np.array(para[0])
                        val = np.array(para[1])
                        for ii in range(len(label)):
                            top4 = pre[ii]
                            accum_num_sum += 1
                            for idx in top4:
                                if int(idx) in input_word[ii]:
                                    continue
                                if int(idx) == int(label[ii][0]):
                                    accum_num += 1
                                break
                        if step_id % 1 == 0:
                            print("step:%d %d " % (step_id, accum_num))
                    print("epoch:%d \t acc:%.3f " %
                          (epoch, 1.0 * accum_num / accum_num_sum))
                    t1 = time.time()


if __name__ == "__main__":
201
    paddle.enable_static()
S
slf12 已提交
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
    args = parse_args()
    start_index = args.start_index
    last_index = args.last_index
    test_dir = args.test_dir
    model_dir = args.model_dir
    batch_size = args.batch_size
    dict_path = args.dict_path
    use_cuda = True if args.use_cuda else False
    print("start index: ", start_index, " last_index:", last_index)
    vocab_size, test_reader, id2word = utils.prepare_data(
        test_dir, dict_path, batch_size=batch_size)
    print("vocab_size:", vocab_size)
    if args.infer_step:
        infer_step(
            args,
            vocab_size,
            test_reader=test_reader,
            use_cuda=use_cuda,
            i2w=id2word)
    else:
        infer_epoch(
            args,
            vocab_size,
            test_reader=test_reader,
            use_cuda=use_cuda,
            i2w=id2word)