ofa.py 15.0 KB
Newer Older
C
ceci3 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
import numpy as np
from collections import namedtuple
import paddle
import paddle.fluid as fluid
C
ceci3 已提交
20 21 22
from .utils.utils import get_paddle_version
pd_ver = get_paddle_version()
if pd_ver == 185:
C
ceci3 已提交
23
    from .layers import BaseBlock, SuperConv2D, SuperLinear
C
ceci3 已提交
24 25
    Layer = paddle.fluid.dygraph.Layer
else:
C
ceci3 已提交
26
    from .layers_new import BaseBlock, SuperConv2D, SuperLinear
C
ceci3 已提交
27
    Layer = paddle.nn.Layer
C
ceci3 已提交
28 29 30 31 32 33 34 35
from .utils.utils import search_idx
from ...common import get_logger

_logger = get_logger(__name__, level=logging.INFO)

__all__ = ['OFA', 'RunConfig', 'DistillConfig']

RunConfig = namedtuple('RunConfig', [
C
ceci3 已提交
36 37
    'train_batch_size', 'n_epochs', 'save_frequency', 'eval_frequency',
    'init_learning_rate', 'total_images', 'elastic_depth', 'dynamic_batch_size'
C
ceci3 已提交
38 39 40 41 42
])
RunConfig.__new__.__defaults__ = (None, ) * len(RunConfig._fields)

DistillConfig = namedtuple('DistillConfig', [
    'lambda_distill', 'teacher_model', 'mapping_layers', 'teacher_model_path',
C
ceci3 已提交
43
    'distill_fn', 'mapping_op'
C
ceci3 已提交
44 45 46 47
])
DistillConfig.__new__.__defaults__ = (None, ) * len(DistillConfig._fields)


C
ceci3 已提交
48
class OFABase(Layer):
C
ceci3 已提交
49 50 51 52 53 54 55 56 57 58 59
    def __init__(self, model):
        super(OFABase, self).__init__()
        self.model = model
        self._layers, self._elastic_task = self.get_layers()

    def get_layers(self):
        layers = dict()
        elastic_task = set()
        for name, sublayer in self.model.named_sublayers():
            if isinstance(sublayer, BaseBlock):
                sublayer.set_supernet(self)
C
ceci3 已提交
60 61 62 63
                if not sublayer.fixed:
                    layers[sublayer.key] = sublayer.candidate_config
                    for k in sublayer.candidate_config.keys():
                        elastic_task.add(k)
C
ceci3 已提交
64 65 66 67 68 69 70
        return layers, elastic_task

    def forward(self, *inputs, **kwargs):
        raise NotImplementedError

    def layers_forward(self, block, *inputs, **kwargs):
        if getattr(self, 'current_config', None) != None:
C
ceci3 已提交
71 72 73 74 75 76 77 78 79
            ### if block is fixed, donnot join key into candidate
            ### concrete config as parameter in kwargs
            if block.fixed == False:
                assert block.key in self.current_config, 'DONNT have {} layer in config.'.format(
                    block.key)
                config = self.current_config[block.key]
            else:
                config = dict()
                config.update(kwargs)
C
ceci3 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93
        else:
            config = dict()
        logging.debug(self.model, config)

        return block.fn(*inputs, **config)

    @property
    def layers(self):
        return self._layers


class OFA(OFABase):
    def __init__(self,
                 model,
C
ceci3 已提交
94
                 run_config=None,
C
ceci3 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
                 net_config=None,
                 distill_config=None,
                 elastic_order=None,
                 train_full=False):
        super(OFA, self).__init__(model)
        self.net_config = net_config
        self.run_config = run_config
        self.distill_config = distill_config
        self.elastic_order = elastic_order
        self.train_full = train_full
        self.iter = 0
        self.dynamic_iter = 0
        self.manual_set_task = False
        self.task_idx = 0
        self._add_teacher = False
        self.netAs_param = []

        ### if elastic_order is none, use default order
        if self.elastic_order is not None:
            assert isinstance(self.elastic_order,
                              list), 'elastic_order must be a list'

C
ceci3 已提交
117 118 119 120 121
            if getattr(self.run_config, 'elastic_depth', None) != None:
                depth_list = list(set(self.run_config.elastic_depth))
                depth_list.sort()
                self.layers['depth'] = depth_list

C
ceci3 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
        if self.elastic_order is None:
            self.elastic_order = []
            # zero, elastic resulotion, write in demo
            # first, elastic kernel size
            if 'kernel_size' in self._elastic_task:
                self.elastic_order.append('kernel_size')

            # second, elastic depth, such as: list(2, 3, 4)
            if getattr(self.run_config, 'elastic_depth', None) != None:
                depth_list = list(set(self.run_config.elastic_depth))
                depth_list.sort()
                self.layers['depth'] = depth_list
                self.elastic_order.append('depth')

            # final, elastic width
            if 'expand_ratio' in self._elastic_task:
                self.elastic_order.append('width')

            if 'channel' in self._elastic_task and 'width' not in self.elastic_order:
                self.elastic_order.append('width')

C
ceci3 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
        if getattr(self.run_config, 'n_epochs', None) != None:
            assert len(self.run_config.n_epochs) == len(self.elastic_order)
            for idx in range(len(run_config.n_epochs)):
                assert isinstance(
                    run_config.n_epochs[idx],
                    list), "each candidate in n_epochs must be list"

            if self.run_config.dynamic_batch_size != None:
                assert len(self.run_config.n_epochs) == len(
                    self.run_config.dynamic_batch_size)
            if self.run_config.init_learning_rate != None:
                assert len(self.run_config.n_epochs) == len(
                    self.run_config.init_learning_rate)
                for idx in range(len(run_config.n_epochs)):
                    assert isinstance(
                        run_config.init_learning_rate[idx], list
                    ), "each candidate in init_learning_rate must be list"
C
ceci3 已提交
160 161

        ### =================  add distill prepare ======================
C
ceci3 已提交
162
        if self.distill_config != None:
C
ceci3 已提交
163 164 165 166 167 168 169 170 171 172
            self._add_teacher = True
            self._prepare_distill()

        self.model.train()

    def _prepare_distill(self):
        self.Tacts, self.Sacts = {}, {}

        if self.distill_config.teacher_model == None:
            logging.error(
C
ceci3 已提交
173
                'If you want to add distill, please input instance of teacher model'
C
ceci3 已提交
174 175
            )

C
ceci3 已提交
176
        ### instance model by user can input super-param easily.
C
ceci3 已提交
177
        assert isinstance(self.distill_config.teacher_model, Layer)
C
ceci3 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190

        # load teacher parameter
        if self.distill_config.teacher_model_path != None:
            param_state_dict, _ = paddle.load_dygraph(
                self.distill_config.teacher_model_path)
            self.distill_config.teacher_model.set_dict(param_state_dict)

        self.ofa_teacher_model = OFABase(self.distill_config.teacher_model)
        self.ofa_teacher_model.model.eval()

        # add hook if mapping layers is not None
        # if mapping layer is None, return the output of the teacher model,
        # if mapping layer is NOT None, add hook and compute distill loss about mapping layers.
C
ceci3 已提交
191
        mapping_layers = getattr(self.distill_config, 'mapping_layers', None)
C
ceci3 已提交
192 193 194 195
        if mapping_layers != None:
            self.netAs = []
            for name, sublayer in self.model.named_sublayers():
                if name in mapping_layers:
C
ceci3 已提交
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
                    if self.distill_config.mapping_op != None:
                        if self.distill_config.mapping_op.lower() == 'conv2d':
                            netA = SuperConv2D(
                                getattr(sublayer, '_num_filters',
                                        sublayer._out_channels),
                                getattr(sublayer, '_num_filters',
                                        sublayer._out_channels), 1)
                        elif self.distill_config.mapping_op.lower() == 'linear':
                            netA = SuperLinear(
                                getattr(sublayer, '_output_dim',
                                        sublayer._out_features),
                                getattr(sublayer, '_output_dim',
                                        sublayer._out_features))
                        else:
                            raise NotImplementedError(
                                "Not Support Op: {}".format(
                                    self.distill_config.mapping_op.lower()))
                    else:
                        netA = None

                    if netA != None:
                        self.netAs_param.extend(netA.parameters())
C
ceci3 已提交
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
                    self.netAs.append(netA)

            def get_activation(mem, name):
                def get_output_hook(layer, input, output):
                    mem[name] = output

                return get_output_hook

            def add_hook(net, mem, mapping_layers):
                for idx, (n, m) in enumerate(net.named_sublayers()):
                    if n in mapping_layers:
                        m.register_forward_post_hook(get_activation(mem, n))

            add_hook(self.model, self.Sacts, mapping_layers)
            add_hook(self.ofa_teacher_model.model, self.Tacts, mapping_layers)

    def _compute_epochs(self):
        if getattr(self, 'epoch', None) == None:
C
ceci3 已提交
236 237 238 239 240 241 242
            assert self.run_config.total_images is not None, \
                "if not use set_epoch() to set epoch, please set total_images in run_config."
            assert self.run_config.train_batch_size is not None, \
                "if not use set_epoch() to set epoch, please set train_batch_size in run_config."
            assert self.run_config.n_epochs is not None, \
                "if not use set_epoch() to set epoch, please set n_epochs in run_config."
            self.iter_per_epochs = self.run_config.total_images // self.run_config.train_batch_size
C
ceci3 已提交
243 244
            epoch = self.iter // self.iter_per_epochs
        else:
C
ceci3 已提交
245
            epoch = self.epoch
C
ceci3 已提交
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
        return epoch

    def _sample_from_nestdict(self, cands, sample_type, task, phase):
        sample_cands = dict()
        for k, v in cands.items():
            if isinstance(v, dict):
                sample_cands[k] = self._sample_from_nestdict(
                    v, sample_type=sample_type, task=task, phase=phase)
            elif isinstance(v, list) or isinstance(v, set) or isinstance(v,
                                                                         tuple):
                if sample_type == 'largest':
                    sample_cands[k] = v[-1]
                elif sample_type == 'smallest':
                    sample_cands[k] = v[0]
                else:
                    if k not in task:
                        # sort and deduplication in candidate_config
                        # fixed candidate not in task_list
                        sample_cands[k] = v[-1]
                    else:
                        # phase == None -> all candidate; phase == number, append small candidate in each phase
                        # phase only affect last task in current task_list
                        if phase != None and k == task[-1]:
                            start = -(phase + 2)
                        else:
                            start = 0
                        sample_cands[k] = np.random.choice(v[start:])

        return sample_cands

    def _sample_config(self, task, sample_type='random', phase=None):
        config = self._sample_from_nestdict(
            self.layers, sample_type=sample_type, task=task, phase=phase)
        return config

    def set_task(self, task=None, phase=None):
        self.manual_set_task = True
        self.task = task
        self.phase = phase

    def set_epoch(self, epoch):
        self.epoch = epoch

    def _progressive_shrinking(self):
        epoch = self._compute_epochs()
        self.task_idx, phase_idx = search_idx(epoch, self.run_config.n_epochs)
        self.task = self.elastic_order[:self.task_idx + 1]
        if 'width' in self.task:
            ### change width in task to concrete config
            self.task.remove('width')
            if 'expand_ratio' in self._elastic_task:
                self.task.append('expand_ratio')
            if 'channel' in self._elastic_task:
                self.task.append('channel')
        if len(self.run_config.n_epochs[self.task_idx]) == 1:
            phase_idx = None
        return self._sample_config(task=self.task, phase=phase_idx)

    def calc_distill_loss(self):
        losses = []
        assert len(self.netAs) > 0
        for i, netA in enumerate(self.netAs):
            n = self.distill_config.mapping_layers[i]
            Tact = self.Tacts[n]
            Sact = self.Sacts[n]
C
ceci3 已提交
311 312 313 314 315 316 317 318 319 320 321
            if isinstance(netA, SuperConv2D):
                Sact = netA(
                    Sact,
                    channel=getattr(netA, '_num_filters', netA._out_channels))
            elif isinstance(netA, SuperLinear):
                Sact = netA(
                    Sact,
                    channel=getattr(netA, '_output_dim', netA._out_features))
            else:
                Sact = Sact

C
ceci3 已提交
322
            if self.distill_config.distill_fn == None:
C
ceci3 已提交
323
                loss = fluid.layers.mse_loss(Sact, Tact.detach())
C
ceci3 已提交
324
            else:
C
ceci3 已提交
325
                loss = distill_fn(Sact, Tact.detach())
C
ceci3 已提交
326 327 328 329 330 331 332 333 334 335 336
            losses.append(loss)
        return sum(losses) * self.distill_config.lambda_distill

    ### TODO: complete it
    def search(self, eval_func, condition):
        pass

    ### TODO: complete it
    def export(self, config):
        pass

C
ceci3 已提交
337 338 339
    def set_net_config(self, net_config):
        self.net_config = net_config

C
ceci3 已提交
340 341 342 343 344 345 346 347 348
    def forward(self, *inputs, **kwargs):
        # =====================  teacher process  =====================
        teacher_output = None
        if self._add_teacher:
            teacher_output = self.ofa_teacher_model.model.forward(*inputs,
                                                                  **kwargs)
        # ============================================================

        # ====================   student process  =====================
C
ceci3 已提交
349 350 351 352 353 354
        if getattr(self.run_config, 'dynamic_batch_size', None) != None:
            self.dynamic_iter += 1
            if self.dynamic_iter == self.run_config.dynamic_batch_size[
                    self.task_idx]:
                self.iter += 1
                self.dynamic_iter = 0
C
ceci3 已提交
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370

        if self.net_config == None:
            if self.train_full == True:
                self.current_config = self._sample_config(
                    task=None, sample_type='largest')
            else:
                if self.manual_set_task == False:
                    self.current_config = self._progressive_shrinking()
                else:
                    self.current_config = self._sample_config(
                        self.task, phase=self.phase)
        else:
            self.current_config = self.net_config

        _logger.debug("Current config is {}".format(self.current_config))
        if 'depth' in self.current_config:
C
ceci3 已提交
371
            kwargs['depth'] = self.current_config['depth']
C
ceci3 已提交
372 373

        return self.model.forward(*inputs, **kwargs), teacher_output