test_observers_acc.py 9.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
# Copyright (c) 2023  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import sys
sys.path.append("../../")
import os
import unittest
import paddle
import tempfile
import numpy as np

from paddle.vision.models import resnet18
from paddle.quantization import QuantConfig
from paddle.quantization import PTQ

from paddleslim.quant.observers import HistObserver, KLObserver, EMDObserver, MSEObserver, AVGObserver
from paddleslim.quant.observers.hist import PercentHistObserverLayer
from paddleslim.quant.observers.kl import KLObserverLayer
from paddleslim.quant.observers.mse import MSEObserverLayer
from paddleslim.quant.observers.avg import AVGObserverLayer
from paddleslim.quant.observers.emd import EMDObserverLayer
from paddleslim.quant.observers.kl import KLObserverLayer
from paddle.nn.quant.format import LinearDequanter, LinearQuanter

import logging
from paddleslim.common import get_logger
_logger = get_logger(__name__, level=logging.INFO)


class ImperativeLenet(paddle.nn.Layer):
    def __init__(self, num_classes=10, classifier_activation='softmax'):
        super(ImperativeLenet, self).__init__()
        self.features = paddle.nn.Sequential(
            paddle.nn.Conv2D(
                in_channels=1,
                out_channels=6,
                kernel_size=3,
                stride=1,
                padding=1),
            paddle.nn.AvgPool2D(kernel_size=2, stride=2),
            paddle.nn.Conv2D(
                in_channels=6,
                out_channels=16,
                kernel_size=5,
                stride=1,
                padding=0), paddle.nn.AvgPool2D(kernel_size=2, stride=2))

        self.fc = paddle.nn.Sequential(
            paddle.nn.Linear(in_features=400, out_features=120),
            paddle.nn.Linear(in_features=120, out_features=84),
            paddle.nn.Linear(in_features=84, out_features=num_classes), )

    def forward(self, inputs):
        x = self.features(inputs)

        x = paddle.flatten(x, 1)
        x = self.fc(x)
        return x


class TestPTQObserverAcc(unittest.TestCase):
    def __init__(self, observer, observer_type, *args, **kvargs):
        super(TestPTQObserverAcc, self).__init__(*args, **kvargs)
        self.observer = observer
        self.observer_type = observer_type

    def setUp(self):
        paddle.set_device("cpu")
        self.init_case()
        self.dummy_input = paddle.rand([1, 3, 224, 224])
        self.temp_dir = tempfile.TemporaryDirectory(dir="./")
        self.path = os.path.join(self.temp_dir.name, 'qat')
        if not os.path.exists('ILSVRC2012_data_demo'):
            os.system(
                'wget -q https://sys-p0.bj.bcebos.com/slim_ci/ILSVRC2012_data_demo.tar.gz'
            )
            os.system('tar -xf ILSVRC2012_data_demo.tar.gz')
        seed = 1
        np.random.seed(seed)
        paddle.static.default_main_program().random_seed = seed
        paddle.static.default_startup_program().random_seed = seed

    def tearDown(self):
        self.temp_dir.cleanup()

    def runTest(self):
        self.test_convergence()

    def init_case(self):
        self.q_config = QuantConfig(activation=None, weight=None)
        self.q_config.add_type_config(
            paddle.nn.Conv2D, activation=self.observer, weight=self.observer)

    def _count_layers(self, model, layer_type):
        count = 0
        for _layer in model.sublayers(True):
            if isinstance(_layer, layer_type):
                count += 1
        return count

    def test_convergence(self):
        model = ImperativeLenet()
        place = paddle.CUDAPlace(0) \
            if paddle.is_compiled_with_cuda() else paddle.CPUPlace()

        transform = paddle.vision.transforms.Compose([
            paddle.vision.transforms.Transpose(),
            paddle.vision.transforms.Normalize([127.5], [127.5])
        ])

        train_dataset = paddle.vision.datasets.MNIST(
            mode='train', backend='cv2', transform=transform)
        val_dataset = paddle.vision.datasets.MNIST(
            mode='test', backend='cv2', transform=transform)

        train_reader = paddle.io.DataLoader(
            train_dataset,
            drop_last=True,
            places=place,
            batch_size=64,
            return_list=True)
        test_reader = paddle.io.DataLoader(
            val_dataset, places=place, batch_size=64, return_list=True)

        def train(model):
            adam = paddle.optimizer.Adam(
                learning_rate=0.0001, parameters=model.parameters())
            epoch_num = 1
            for epoch in range(epoch_num):
                model.train()
                for batch_id, data in enumerate(train_reader):
                    img = paddle.to_tensor(data[0])
                    label = paddle.to_tensor(data[1])
                    img = paddle.reshape(img, [-1, 1, 28, 28])
                    label = paddle.reshape(label, [-1, 1])

                    out = model(img)
                    acc = paddle.metric.accuracy(out, label)
                    loss = paddle.nn.functional.loss.cross_entropy(out, label)
                    avg_loss = paddle.mean(loss)
                    avg_loss.backward()
                    adam.minimize(avg_loss)
                    model.clear_gradients()
                    if batch_id % 100 == 0:
                        _logger.info(
                            "Train | At epoch {} step {}: loss = {:}, acc= {:}".
                            format(epoch, batch_id,
                                   avg_loss.numpy(), acc.numpy()))

        def test(model):
            model.eval()
            avg_acc = [[], []]
            for batch_id, data in enumerate(test_reader):
                img = paddle.to_tensor(data[0])
                img = paddle.reshape(img, [-1, 1, 28, 28])
                label = paddle.to_tensor(data[1])
                label = paddle.reshape(label, [-1, 1])

                out = model(img)
                acc_top1 = paddle.metric.accuracy(input=out, label=label, k=1)
                acc_top5 = paddle.metric.accuracy(input=out, label=label, k=5)
                avg_acc[0].append(acc_top1.numpy())
                avg_acc[1].append(acc_top5.numpy())
                if batch_id % 100 == 0:
                    _logger.info(
                        "Test | step {}: acc1 = {:}, acc5 = {:}".format(
                            batch_id, acc_top1.numpy(), acc_top5.numpy()))

            _logger.info("Test | Average: acc_top1 {}, acc_top5 {}".format(
                np.mean(avg_acc[0]), np.mean(avg_acc[1])))
            return np.mean(avg_acc[0]), np.mean(avg_acc[1])

        def ptq_sample(model):
            model.eval()
            avg_acc = [[], []]
            for batch_id, data in enumerate(test_reader):
                img = paddle.to_tensor(data[0])
                img = paddle.reshape(img, [-1, 1, 28, 28])
                label = paddle.to_tensor(data[1])
                label = paddle.reshape(label, [-1, 1])

                out = model(img)

                if batch_id % 100 == 0:
                    _logger.info("PTQ sampling | step {}".format(batch_id))

        train(model)
        top1_1, top5_1 = test(model)
        ptq = PTQ(self.q_config)
        model.eval()
        quant_model = ptq.quantize(model, inplace=False)

        ptq_sample(quant_model)
        converted_model = ptq.convert(quant_model, inplace=False)
        top1_2, top5_2 = test(converted_model)

        _logger.info(
            "Before quantization: top1: {}, top5: {}".format(top1_1, top5_1))
        _logger.info(
            "After quantization: top1: {}, top5: {}".format(top1_2, top5_2))
        _logger.info("\n")

        diff = 0.01
        self.assertTrue(
            top1_1 - top1_2 < diff,
            msg="The acc of quant model is too lower than fp32 model")
        _logger.info('done')
        return


observer_suite = unittest.TestSuite()
observer_suite.addTest(
    TestPTQObserverAcc(
        observer=HistObserver(sign=True, symmetric=True),
        observer_type=PercentHistObserverLayer))
observer_suite.addTest(
    TestPTQObserverAcc(
        observer=KLObserver(bins_count=256), observer_type=KLObserverLayer))

observer_suite.addTest(
    TestPTQObserverAcc(observer=AVGObserver(), observer_type=AVGObserverLayer))
observer_suite.addTest(
    TestPTQObserverAcc(observer=EMDObserver(), observer_type=EMDObserverLayer))
observer_suite.addTest(
    TestPTQObserverAcc(observer=MSEObserver(), observer_type=MSEObserverLayer))

if __name__ == '__main__':
    runner = unittest.TextTestRunner(verbosity=2)
    runner.run(observer_suite)
    os.system('rm -rf ILSVRC2012_data_demo.tar.gz')
    os.system('rm -rf ILSVRC2012_data_demo')