post_process.py 5.9 KB
Newer Older
G
Guanghua Yu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import cv2


def box_area(boxes):
    """
    Args:
        boxes(np.ndarray): [N, 4]
    return: [N]
    """
    return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])


def box_iou(box1, box2):
    """
    Args:
        box1(np.ndarray): [N, 4]
        box2(np.ndarray): [M, 4]
    return: [N, M]
    """
    area1 = box_area(box1)
    area2 = box_area(box2)
    lt = np.maximum(box1[:, np.newaxis, :2], box2[:, :2])
    rb = np.minimum(box1[:, np.newaxis, 2:], box2[:, 2:])
    wh = rb - lt
    wh = np.maximum(0, wh)
    inter = wh[:, :, 0] * wh[:, :, 1]
    iou = inter / (area1[:, np.newaxis] + area2 - inter)
    return iou


def nms(boxes, scores, iou_threshold):
    """
    Non Max Suppression numpy implementation.
    args:
        boxes(np.ndarray): [N, 4]
        scores(np.ndarray): [N, 1]
        iou_threshold(float): Threshold of IoU.
    """
    idxs = scores.argsort()
    keep = []
    while idxs.size > 0:
        max_score_index = idxs[-1]
        max_score_box = boxes[max_score_index][None, :]
        keep.append(max_score_index)
        if idxs.size == 1:
            break
        idxs = idxs[:-1]
        other_boxes = boxes[idxs]
        ious = box_iou(max_score_box, other_boxes)
        idxs = idxs[ious[0] <= iou_threshold]

    keep = np.array(keep)
    return keep


class YOLOv7PostProcess(object):
    """
    Post process of YOLOv6 network.
    args:
        score_threshold(float): Threshold to filter out bounding boxes with low 
                confidence score. If not provided, consider all boxes.
        nms_threshold(float): The threshold to be used in NMS.
        multi_label(bool): Whether keep multi label in boxes.
        keep_top_k(int): Number of total bboxes to be kept per image after NMS
                step. -1 means keeping all bboxes after NMS step.
    """

    def __init__(self,
                 score_threshold=0.25,
                 nms_threshold=0.5,
                 multi_label=False,
                 keep_top_k=300):
        self.score_threshold = score_threshold
        self.nms_threshold = nms_threshold
        self.multi_label = multi_label
        self.keep_top_k = keep_top_k

    def _xywh2xyxy(self, x):
        # Convert from [x, y, w, h] to [x1, y1, x2, y2]
        y = np.copy(x)
        y[:, 0] = x[:, 0] - x[:, 2] / 2  # top left x
        y[:, 1] = x[:, 1] - x[:, 3] / 2  # top left y
        y[:, 2] = x[:, 0] + x[:, 2] / 2  # bottom right x
        y[:, 3] = x[:, 1] + x[:, 3] / 2  # bottom right y
        return y

    def _non_max_suppression(self, prediction):
        max_wh = 4096  # (pixels) minimum and maximum box width and height
        nms_top_k = 30000

        cand_boxes = prediction[..., 4] > self.score_threshold  # candidates
        output = [np.zeros((0, 6))] * prediction.shape[0]

        for batch_id, boxes in enumerate(prediction):
            # Apply constraints
            boxes = boxes[cand_boxes[batch_id]]
            if not boxes.shape[0]:
                continue
            # Compute conf (conf = obj_conf * cls_conf)
            boxes[:, 5:] *= boxes[:, 4:5]

            # Box (center x, center y, width, height) to (x1, y1, x2, y2)
            convert_box = self._xywh2xyxy(boxes[:, :4])

            # Detections matrix nx6 (xyxy, conf, cls)
            if self.multi_label:
                i, j = (boxes[:, 5:] > self.score_threshold).nonzero()
                boxes = np.concatenate(
                    (convert_box[i], boxes[i, j + 5, None],
                     j[:, None].astype(np.float32)),
                    axis=1)
            else:
                conf = np.max(boxes[:, 5:], axis=1)
                j = np.argmax(boxes[:, 5:], axis=1)
                re = np.array(conf.reshape(-1) > self.score_threshold)
                conf = conf.reshape(-1, 1)
                j = j.reshape(-1, 1)
                boxes = np.concatenate((convert_box, conf, j), axis=1)[re]

            num_box = boxes.shape[0]
            if not num_box:
                continue
            elif num_box > nms_top_k:
                boxes = boxes[boxes[:, 4].argsort()[::-1][:nms_top_k]]

            # Batched NMS
            c = boxes[:, 5:6] * max_wh
            clean_boxes, scores = boxes[:, :4] + c, boxes[:, 4]
            keep = nms(clean_boxes, scores, self.nms_threshold)
            # limit detection box num
            if keep.shape[0] > self.keep_top_k:
                keep = keep[:self.keep_top_k]
            output[batch_id] = boxes[keep]
        return output

    def __call__(self, outs, scale_factor):
        preds = self._non_max_suppression(outs)
        bboxs, box_nums = [], []
        for i, pred in enumerate(preds):
            if len(pred.shape) > 2:
                pred = np.squeeze(pred)
            if len(pred.shape) == 1:
                pred = pred[np.newaxis, :]
            pred_bboxes = pred[:, :4]
            scale_factor = np.tile(scale_factor[i][::-1], (1, 2))
            pred_bboxes /= scale_factor
            bbox = np.concatenate(
                [
                    pred[:, -1][:, np.newaxis], pred[:, -2][:, np.newaxis],
                    pred_bboxes
                ],
                axis=-1)
            bboxs.append(bbox)
            box_num = bbox.shape[0]
            box_nums.append(box_num)
        bboxs = np.concatenate(bboxs, axis=0)
        box_nums = np.array(box_nums)
        return {'bbox': bboxs, 'bbox_num': box_nums}