quant_aware_tutorial.md 5.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
# 图像分类模型量化训练-快速开始

该教程以图像分类模型MobileNetV1为例,说明如何快速使用PaddleSlim的[量化训练接口](https://github.com/PaddlePaddle/PaddleSlim/blob/develop/docs/docs/api/quantization_api.md)。 该示例包含以下步骤:

1. 导入依赖
2. 构建模型
3. 训练模型
4. 量化
5. 训练和测试量化后的模型
6. 保存量化后的模型

## 1. 导入依赖
PaddleSlim依赖Paddle1.7版本,请确认已正确安装Paddle,然后按以下方式导入Paddle和PaddleSlim:


```python
import paddle
import paddle.fluid as fluid
import paddleslim as slim
import numpy as np
```

## 2. 构建网络
该章节构造一个用于对MNIST数据进行分类的分类模型,选用`MobileNetV1`,并将输入大小设置为`[1, 28, 28]`,输出类别数为10。               为了方便展示示例,我们在`paddleslim.models`下预定义了用于构建分类模型的方法,执行以下代码构建分类模型:

>注意:paddleslim.models下的API并非PaddleSlim常规API,是为了简化示例而封装预定义的一系列方法,比如:模型结构的定义、Program的构建等。


```python
exe, train_program, val_program, inputs, outputs = \
    slim.models.image_classification("MobileNet", [1, 28, 28], 10, use_gpu=True)
```

## 3. 训练模型
该章节介绍了如何定义输入数据和如何训练和测试分类模型。先训练分类模型的原因是量化训练过程是在训练好的模型上进行的,也就是说是在训练好的模型的基础上加入量化反量化op之后,用小学习率进行参数微调。

### 3.1 定义输入数据

为了快速执行该示例,我们选取简单的MNIST数据,Paddle框架的`paddle.dataset.mnist`包定义了MNIST数据的下载和读取。
代码如下:


```python
import paddle.dataset.mnist as reader
train_reader = paddle.batch(
        reader.train(), batch_size=128, drop_last=True)
test_reader = paddle.batch(
        reader.train(), batch_size=128, drop_last=True)
train_feeder = fluid.DataFeeder(inputs, fluid.CPUPlace())
```

### 3.2 训练和测试
先定义训练和测试函数,正常训练和量化训练时只需要调用函数即可。在训练函数中执行了一个epoch的训练,因为MNIST数据集数据较少,一个epoch就可将top1精度训练到95%以上。


```python
def train(prog):
    iter = 0
    for data in train_reader():
        acc1, acc5, loss = exe.run(prog, feed=train_feeder.feed(data), fetch_list=outputs)
        if iter % 100 == 0:
            print('train iter={}, top1={}, top5={}, loss={}'.format(iter, acc1.mean(), acc5.mean(), loss.mean()))
        iter += 1
        
def test(prog):
    iter = 0
    res = [[], []]
    for data in train_reader():
        acc1, acc5, loss = exe.run(prog, feed=train_feeder.feed(data), fetch_list=outputs)
        if iter % 100 == 0:
            print('test iter={}, top1={}, top5={}, loss={}'.format(iter, acc1.mean(), acc5.mean(), loss.mean()))
        res[0].append(acc1.mean())
        res[1].append(acc5.mean())
        iter += 1
    print('final test result top1={}, top5={}'.format(np.array(res[0]).mean(), np.array(res[1]).mean()))
```

调用``train``函数训练分类网络,``train_program``是在第2步:构建网络中定义的。


```python
train(train_program)
```


调用``test``函数测试分类网络,``val_program``是在第2步:构建网络中定义的。


```python
test(val_program)
```


## 4. 量化

按照[默认配置](https://paddlepaddle.github.io/PaddleSlim/api/quantization_api/#_1)``train_program````val_program``中加入量化和反量化op.


```python
quant_program = slim.quant.quant_aware(train_program, exe.place, for_test=False)
val_quant_program = slim.quant.quant_aware(val_program, exe.place, for_test=True)
```


## 5. 训练和测试量化后的模型
微调量化后的模型,训练一个epoch后测试。


```python
train(quant_program)
```


测试量化后的模型,和``3.2 训练和测试``中得到的测试结果相比,精度相近,达到了无损量化。


```python
test(val_quant_program)
```


## 6. 保存量化后的模型

``4. 量化``中使用接口``slim.quant.quant_aware``接口得到的模型只适合训练时使用,为了得到最终使用时的模型,需要使用[slim.quant.convert](https://paddlepaddle.github.io/PaddleSlim/api/quantization_api/#convert)接口,然后使用[fluid.io.save_inference_model](https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/api_cn/io_cn/save_inference_model_cn.html#save-inference-model)保存模型。``float_prog``的参数数据类型是float32,但是数据范围是int8, 保存之后可使用fluid或者paddle-lite加载使用,paddle-lite在使用时,会先将类型转换为int8。``int8_prog``的参数数据类型是int8, 保存后可看到量化后模型大小,不可加载使用。


```python
float_prog, int8_prog = slim.quant.convert(val_quant_program, exe.place, save_int8=True)
target_vars = [float_prog.global_block().var(name) for name in outputs]
fluid.io.save_inference_model(dirname='./inference_model/float',
        feeded_var_names=[var.name for var in inputs],
        target_vars=target_vars,
        executor=exe,
        main_program=float_prog)
fluid.io.save_inference_model(dirname='./inference_model/int8',
        feeded_var_names=[var.name for var in inputs],
        target_vars=target_vars,
        executor=exe,
        main_program=int8_prog)
```