evaluate.py 4.8 KB
Newer Older
M
minghaoBD 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
import os
import sys
import logging
import paddle
import argparse
import functools
import math
import time
import numpy as np
import paddle.fluid as fluid
sys.path.append(os.path.join(os.path.dirname("__file__"), os.path.pardir))
from paddleslim.prune.unstructured_pruner import UnstructuredPruner
from paddleslim.common import get_logger
import models
from utility import add_arguments, print_arguments
import paddle.vision.transforms as T

_logger = get_logger(__name__, level=logging.INFO)

parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
23
add_arg('batch_size',       int,  64,                 "Minibatch size.")
M
minghaoBD 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
add_arg('use_gpu',          bool, True,                "Whether to use GPU or not.")
add_arg('model',            str,  "MobileNet",                "The target model.")
add_arg('pruned_model', str,  "models",                "Whether to use pretrained model.")
add_arg('data',             str, "mnist",                 "Which data to use. 'mnist' or 'imagenet'.")
add_arg('log_period',       int, 100,                 "Log period in batches.")
# yapf: enable

model_list = models.__all__


def compress(args):
    train_reader = None
    test_reader = None
    if args.data == "mnist":
        transform = T.Compose([T.Transpose(), T.Normalize([127.5], [127.5])])
        train_dataset = paddle.vision.datasets.MNIST(
            mode='train', backend="cv2", transform=transform)
        val_dataset = paddle.vision.datasets.MNIST(
            mode='test', backend="cv2", transform=transform)
        class_dim = 10
        image_shape = "1,28,28"
    elif args.data == "imagenet":
        import imagenet_reader as reader
47 48
        train_dataset = reader.ImageNetDataset(mode='train')
        val_dataset = reader.ImageNetDataset(mode='val')
M
minghaoBD 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
        class_dim = 1000
        image_shape = "3,224,224"
    else:
        raise ValueError("{} is not supported.".format(args.data))
    image_shape = [int(m) for m in image_shape.split(",")]
    assert args.model in model_list, "{} is not in lists: {}".format(args.model,
                                                                     model_list)
    places = paddle.static.cuda_places(
    ) if args.use_gpu else paddle.static.cpu_places()
    place = places[0]
    exe = paddle.static.Executor(place)
    image = paddle.static.data(
        name='image', shape=[None] + image_shape, dtype='float32')
    label = paddle.static.data(name='label', shape=[None, 1], dtype='int64')

    batch_size_per_card = int(args.batch_size / len(places))
    valid_loader = paddle.io.DataLoader(
        val_dataset,
        places=place,
        feed_list=[image, label],
        drop_last=False,
        return_list=False,
        use_shared_memory=True,
        batch_size=batch_size_per_card,
        shuffle=False)

    # model definition
    model = models.__dict__[args.model]()
    out = model.net(input=image, class_dim=class_dim)
    cost = paddle.nn.functional.loss.cross_entropy(input=out, label=label)
    avg_cost = paddle.mean(x=cost)
    acc_top1 = paddle.metric.accuracy(input=out, label=label, k=1)
    acc_top5 = paddle.metric.accuracy(input=out, label=label, k=5)

    val_program = paddle.static.default_main_program().clone(for_test=True)

    exe.run(paddle.static.default_startup_program())

    if args.pruned_model:

        def if_exist(var):
            return os.path.exists(os.path.join(args.pruned_model, var.name))

        _logger.info("Load pruned model from {}".format(args.pruned_model))
        paddle.fluid.io.load_vars(exe, args.pruned_model, predicate=if_exist)

    def test(epoch, program):
        acc_top1_ns = []
        acc_top5_ns = []

        _logger.info("The current density of the inference model is {}%".format(
            round(100 * UnstructuredPruner.total_sparse(
                paddle.static.default_main_program()), 2)))
        for batch_id, data in enumerate(valid_loader):
            start_time = time.time()
            acc_top1_n, acc_top5_n = exe.run(
105
                program, feed=data, fetch_list=[acc_top1.name, acc_top5.name])
M
minghaoBD 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
            end_time = time.time()
            if batch_id % args.log_period == 0:
                _logger.info(
                    "Eval epoch[{}] batch[{}] - acc_top1: {}; acc_top5: {}; time: {}".
                    format(epoch, batch_id,
                           np.mean(acc_top1_n),
                           np.mean(acc_top5_n), end_time - start_time))
            acc_top1_ns.append(np.mean(acc_top1_n))
            acc_top5_ns.append(np.mean(acc_top5_n))

        _logger.info("Final eval epoch[{}] - acc_top1: {}; acc_top5: {}".format(
            epoch,
            np.mean(np.array(acc_top1_ns)), np.mean(np.array(acc_top5_ns))))

    test(0, val_program)


def main():
    paddle.enable_static()
    args = parser.parse_args()
    print_arguments(args)
    compress(args)


if __name__ == '__main__':
    main()