nas_api.html 23.5 KB
Newer Older
W
wanghaoshuang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85


<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  <title>SA-NAS &mdash; PaddleSlim 1.0 文档</title>
  

  
  

  

  
  
    

  

  
  
    <link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
  

  

  
        <link rel="index" title="索引"
              href="../genindex.html"/>
        <link rel="search" title="搜索" href="../search.html"/>
    <link rel="top" title="PaddleSlim 1.0 文档" href="../index.html"/>
        <link rel="up" title="API文档" href="index.html"/>
        <link rel="next" title="OneShotNAS" href="one_shot_api.html"/>
        <link rel="prev" title="模型分析" href="analysis_api.html"/> 

  
  <script src="../_static/js/modernizr.min.js"></script>

</head>

<body class="wy-body-for-nav" role="document">

  <div class="wy-grid-for-nav">

    
    <nav data-toggle="wy-nav-shift" class="wy-nav-side">
      <div class="wy-side-scroll">
        <div class="wy-side-nav-search">
          

          
            <a href="../index.html" class="icon icon-home"> PaddleSlim
          

          
          </a>

          
            
            
          

          
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>

          
        </div>

        <div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
          
            
            
                <ul class="current">
<li class="toctree-l1"><a class="reference internal" href="../index_en.html">English Documents</a></li>
W
wanghaoshuang 已提交
86
<li class="toctree-l1"><a class="reference internal" href="../intro.html">介绍</a></li>
W
wanghaoshuang 已提交
87 88 89 90 91 92 93 94 95 96 97
<li class="toctree-l1"><a class="reference internal" href="../install.html">安装</a></li>
<li class="toctree-l1"><a class="reference internal" href="../quick_start/index.html">快速开始</a></li>
<li class="toctree-l1"><a class="reference internal" href="../tutorials/index.html">进阶教程</a></li>
<li class="toctree-l1 current"><a class="reference internal" href="index.html">API文档</a><ul class="current">
<li class="toctree-l2"><a class="reference internal" href="analysis_api.html">模型分析</a></li>
<li class="toctree-l2 current"><a class="current reference internal" href="#">SA-NAS</a><ul>
<li class="toctree-l3"><a class="reference internal" href="#id1">搜索空间参数的配置</a></li>
<li class="toctree-l3"><a class="reference internal" href="#sanas">SANAS</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="one_shot_api.html">OneShotNAS</a></li>
W
wanghaoshuang 已提交
98
<li class="toctree-l2"><a class="reference internal" href="pantheon_api.html">大规模可扩展知识蒸馏框架 Pantheon</a></li>
W
wanghaoshuang 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
<li class="toctree-l2"><a class="reference internal" href="prune_api.html">卷积层通道剪裁</a></li>
<li class="toctree-l2"><a class="reference internal" href="quantization_api.html">量化</a></li>
<li class="toctree-l2"><a class="reference internal" href="single_distiller_api.html">简单蒸馏</a></li>
<li class="toctree-l2"><a class="reference internal" href="search_space.html">搜索空间</a></li>
<li class="toctree-l2"><a class="reference internal" href="table_latency.html">硬件延时评估表</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../model_zoo.html">模型库</a></li>
<li class="toctree-l1"><a class="reference internal" href="../algo/algo.html">算法原理</a></li>
</ul>

            
          
        </div>
      </div>
    </nav>

    <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">

      
      <nav class="wy-nav-top" role="navigation" aria-label="top navigation">
        <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
        <a href="../index.html">PaddleSlim</a>
      </nav>


      
      <div class="wy-nav-content">
        <div class="rst-content">
          

 



<div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
    <li><a href="../index.html">Docs</a> &raquo;</li>
      
          <li><a href="index.html">API文档</a> &raquo;</li>
      
    <li>SA-NAS</li>
      <li class="wy-breadcrumbs-aside">
        
          
            <a href="../_sources/api_cn/nas_api.rst.txt" rel="nofollow"> View page source</a>
          
        
      </li>
  </ul>
  <hr/>
</div>
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
  <div class="section" id="sa-nas">
<h1>SA-NAS<a class="headerlink" href="#sa-nas" title="永久链接至标题"></a></h1>
<div class="section" id="id1">
<h2>搜索空间参数的配置<a class="headerlink" href="#id1" title="永久链接至标题"></a></h2>
<p>通过参数配置搜索空间。更多搜索空间的使用可以参考: [search_space](../search_space.md)</p>
<p><strong>参数:</strong></p>
<ul class="simple">
<li><strong>input_size(int|None)</strong>:- <code class="docutils literal"><span class="pre">input_size</span></code> 表示输入 <code class="docutils literal"><span class="pre">feature</span> <span class="pre">map</span></code> 的大小。 <code class="docutils literal"><span class="pre">input_size</span></code><code class="docutils literal"><span class="pre">output_size</span></code> 用来计算整个模型结构中下采样次数。</li>
<li><strong>output_size(int|None)</strong>:- <code class="docutils literal"><span class="pre">output_size</span></code> 表示输出feature map的大小。 <code class="docutils literal"><span class="pre">input_size</span></code><code class="docutils literal"><span class="pre">output_size</span></code> 用来计算整个模型结构中下采样次数。</li>
<li><strong>block_num(int|None)</strong>:- <code class="docutils literal"><span class="pre">block_num</span></code> 表示搜索空间中block的数量。</li>
<li><strong>block_mask(list|None)</strong>:- <code class="docutils literal"><span class="pre">block_mask</span></code> 是一组由0、1组成的列表,0表示当前block是normal block,1表示当前block是reduction block。reduction block表示经过这个block之后的feature map大小下降为之前的一半,normal block表示经过这个block之后feature map大小不变。如果设置了  <code class="docutils literal"><span class="pre">block_mask</span></code> ,则主要以 <code class="docutils literal"><span class="pre">block_mask</span></code> 为主要配置, <code class="docutils literal"><span class="pre">input_size</span></code><code class="docutils literal"><span class="pre">output_size</span></code><code class="docutils literal"><span class="pre">block_num</span></code> 三种配置是无效的。</li>
</ul>
</div>
<div class="section" id="sanas">
<h2>SANAS<a class="headerlink" href="#sanas" title="永久链接至标题"></a></h2>
<dl class="class">
<dt id="paddleslim.nas.SANAS">
<em class="property">class </em><code class="descclassname">paddleslim.nas.</code><code class="descname">SANAS</code><span class="sig-paren">(</span><em>configs</em>, <em>server_addr=(&quot;&quot;</em>, <em>8881)</em>, <em>init_temperature=None</em>, <em>reduce_rate=0.85</em>, <em>init_tokens=None</em>, <em>search_steps=300</em>, <em>save_checkpoint='./nas_checkpoint'</em>, <em>load_checkpoint=None</em>, <em>is_server=True</em><span class="sig-paren">)</span><a class="headerlink" href="#paddleslim.nas.SANAS" title="永久链接至目标"></a></dt>
<dd></dd></dl>

<p><a class="reference external" href="https://github.com/PaddlePaddle/PaddleSlim/blob/develop/paddleslim/nas/sa_nas.py#L36">源代码</a></p>
<p>SANAS(Simulated Annealing Neural Architecture Search)是基于模拟退火算法进行模型结构搜索的算法,一般用于离散搜索任务。</p>
<p><strong>参数:</strong></p>
<ul class="simple">
<li><strong>configs(list&lt;tuple&gt;)</strong> - 搜索空间配置列表,格式是 <code class="docutils literal"><span class="pre">[(key,</span> <span class="pre">{input_size,</span> <span class="pre">output_size,</span> <span class="pre">block_num,</span> <span class="pre">block_mask})]</span></code> 或者 <code class="docutils literal"><span class="pre">[(key)]</span></code> (MobileNetV2、MobilenetV1和ResNet的搜索空间使用和原本网络结构相同的搜索空间,所以仅需指定 <code class="docutils literal"><span class="pre">key</span></code> 即可), <code class="docutils literal"><span class="pre">input_size</span></code><code class="docutils literal"><span class="pre">output_size</span></code> 表示输入和输出的特征图的大小, <code class="docutils literal"><span class="pre">block_num</span></code> 是指搜索网络中的block数量, <code class="docutils literal"><span class="pre">block_mask</span></code> 是一组由0和1组成的列表,0代表不进行下采样的block,1代表下采样的block。 更多paddleslim提供的搜索空间配置可以参考[Search Space](../search_space.md)。</li>
<li><strong>server_addr(tuple)</strong> - SANAS的地址,包括server的ip地址和端口号,如果ip地址为None或者为&#8221;&#8220;的话则默认使用本机ip。默认:(&#8221;&#8221;, 8881)。</li>
<li><strong>init_temperature(float)</strong> - 基于模拟退火进行搜索的初始温度。如果init_template为None而且init_tokens为None,则默认初始温度为10.0,如果init_template为None且init_tokens不为None,则默认初始温度为1.0。详细的温度设置可以参考下面的Note。默认:None。</li>
<li><strong>reduce_rate(float)</strong> - 基于模拟退火进行搜索的衰减率。详细的退火率设置可以参考下面的Note。默认:0.85。</li>
<li><strong>init_tokens(list|None)</strong> - 初始化token,若init_tokens为空,则SA算法随机生成初始化tokens。默认:None。</li>
<li><strong>search_steps(int)</strong> - 搜索过程迭代的次数。默认:300。</li>
<li><strong>save_checkpoint(str|None)</strong> - 保存checkpoint的文件目录,如果设置为None的话则不保存checkpoint。默认: <code class="docutils literal"><span class="pre">./nas_checkpoint</span></code></li>
<li><strong>load_checkpoint(str|None)</strong> - 加载checkpoint的文件目录,如果设置为None的话则不加载checkpoint。默认:None。</li>
<li><strong>is_server(bool)</strong> - 当前实例是否要启动一个server。默认:True。</li>
</ul>
<p><strong>返回:</strong>
一个SANAS类的实例</p>
<p><strong>示例代码:</strong></p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">paddleslim.nas</span> <span class="kn">import</span> <span class="n">SANAS</span>
<span class="n">config</span> <span class="o">=</span> <span class="p">[(</span><span class="s1">&#39;MobileNetV2Space&#39;</span><span class="p">)]</span>
<span class="n">sanas</span> <span class="o">=</span> <span class="n">SANAS</span><span class="p">(</span><span class="n">configs</span><span class="o">=</span><span class="n">config</span><span class="p">)</span>
</pre></div>
</div>
<div class="admonition note">
<p class="first admonition-title">注解</p>
<ul class="last simple">
<li>初始化温度和退火率的意义:<ul>
<li>SA算法内部会保存一个基础token(初始化token可以自己传入也可以随机生成)和基础score(初始化score为-1),下一个token会在当前SA算法保存的token的基础上产生。在SA的搜索过程中,如果本轮的token训练得到的score大于SA算法中保存的score,则本轮的token一定会被SA算法接收保存为下一轮token产生的基础token。</li>
<li>初始温度越高表示SA算法当前处的阶段越不稳定,本轮的token训练得到的score小于SA算法中保存的score的话,本轮的token和score被SA算法接收的可能性越大。</li>
<li>初始温度越低表示SA算法当前处的阶段越稳定,本轮的token训练得到的score小于SA算法中保存的score的话,本轮的token和score被SA算法接收的可能性越小。</li>
<li>退火率越大,表示SA算法收敛的越慢,即SA算法越慢到稳定阶段。</li>
<li>退火率越低,表示SA算法收敛的越快,即SA算法越快到稳定阶段。</li>
</ul>
</li>
<li>初始化温度和退火率的设置:<ul>
<li>如果原本就有一个较好的初始化token,想要基于这个较好的token来进行搜索的话,SA算法可以处于一个较为稳定的状态进行搜索r这种情况下初始温度可以设置的低一些,例如设置为1.0,退火率设置的大一些,例如设置为0.85。如果想要基于这个较好的token利用贪心算法进行搜索,即只有当本轮token训练得到的score大于SA算法中保存的score,SA算法才接收本轮token,则退火率可设置为一个极小的数字,例如设置为0.85 ** 10。</li>
<li>初始化token如果是随机生成的话,代表初始化token是一个比较差的token,SA算法可以处于一种不稳定的阶段进行搜索,尽可能的随机探索所有可能得token,从而找到一个较好的token。初始温度可以设置的高一些,例如设置为1000,退火率相对设置的小一些。</li>
</ul>
</li>
</ul>
</div>
<blockquote>
<div><dl class="method">
<dt id="next_archs">
<code class="descname">next_archs</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#next_archs" title="永久链接至目标"></a></dt>
<dd></dd></dl>

<p>获取下一组模型结构。</p>
<p><strong>返回:</strong>
返回模型结构实例的列表,形式为list。</p>
<p><strong>示例代码:</strong></p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">paddle.fluid</span> <span class="k">as</span> <span class="nn">fluid</span>
<span class="kn">from</span> <span class="nn">paddleslim.nas</span> <span class="kn">import</span> <span class="n">SANAS</span>
<span class="n">config</span> <span class="o">=</span> <span class="p">[(</span><span class="s1">&#39;MobileNetV2Space&#39;</span><span class="p">)]</span>
<span class="n">sanas</span> <span class="o">=</span> <span class="n">SANAS</span><span class="p">(</span><span class="n">configs</span><span class="o">=</span><span class="n">config</span><span class="p">)</span>
<span class="nb">input</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;input&#39;</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="kc">None</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">32</span><span class="p">,</span> <span class="mi">32</span><span class="p">],</span> <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">)</span>
<span class="n">archs</span> <span class="o">=</span> <span class="n">sanas</span><span class="o">.</span><span class="n">next_archs</span><span class="p">()</span>
<span class="k">for</span> <span class="n">arch</span> <span class="ow">in</span> <span class="n">archs</span><span class="p">:</span>
    <span class="n">output</span> <span class="o">=</span> <span class="n">arch</span><span class="p">(</span><span class="nb">input</span><span class="p">)</span>
    <span class="nb">input</span> <span class="o">=</span> <span class="n">output</span>
<span class="nb">print</span><span class="p">(</span><span class="n">output</span><span class="p">)</span>
</pre></div>
</div>
<dl class="method">
<dt id="reward">
<code class="descname">reward</code><span class="sig-paren">(</span><em>score</em><span class="sig-paren">)</span><a class="headerlink" href="#reward" title="永久链接至目标"></a></dt>
<dd></dd></dl>

<p>把当前模型结构的得分情况回传。</p>
<p><strong>参数:</strong></p>
<ul class="simple">
<li><strong>score&lt;float&gt;:</strong> - 当前模型的得分,分数越大越好。</li>
</ul>
<p><strong>返回:</strong>
模型结构更新成功或者失败,成功则返回 <code class="docutils literal"><span class="pre">True</span></code> ,失败则返回 <code class="docutils literal"><span class="pre">False</span></code></p>
<p><strong>示例代码:</strong></p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">paddle.fluid</span> <span class="k">as</span> <span class="nn">fluid</span>
<span class="kn">from</span> <span class="nn">paddleslim.nas</span> <span class="kn">import</span> <span class="n">SANAS</span>
<span class="n">config</span> <span class="o">=</span> <span class="p">[(</span><span class="s1">&#39;MobileNetV2Space&#39;</span><span class="p">)]</span>
<span class="n">sanas</span> <span class="o">=</span> <span class="n">SANAS</span><span class="p">(</span><span class="n">configs</span><span class="o">=</span><span class="n">config</span><span class="p">)</span>
<span class="n">archs</span> <span class="o">=</span> <span class="n">sanas</span><span class="o">.</span><span class="n">next_archs</span><span class="p">()</span>

<span class="c1">### 假设网络计算出来的score是1,实际代码中使用时需要返回真实score。</span>
<span class="n">score</span><span class="o">=</span><span class="nb">float</span><span class="p">(</span><span class="mf">1.0</span><span class="p">)</span>
<span class="n">sanas</span><span class="o">.</span><span class="n">reward</span><span class="p">(</span><span class="nb">float</span><span class="p">(</span><span class="n">score</span><span class="p">))</span>
</pre></div>
</div>
<p>通过一组tokens得到实际的模型结构,一般用来把搜索到最优的token转换为模型结构用来做最后的训练。tokens的形式是一个列表,tokens映射到搜索空间转换成相应的网络结构,一组tokens对应唯一的一个网络结构。</p>
<p><strong>参数:</strong></p>
<ul class="simple">
<li><strong>tokens(list):</strong> - 一组tokens。tokens的长度和范围取决于搜索空间。</li>
</ul>
<p><strong>返回:</strong>
W
wanghaoshuang 已提交
266
根据传入的token得到一个模型结构实例列表。</p>
W
wanghaoshuang 已提交
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
<p><strong>示例代码:</strong></p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">paddle.fluid</span> <span class="k">as</span> <span class="nn">fluid</span>
<span class="kn">from</span> <span class="nn">paddleslim.nas</span> <span class="kn">import</span> <span class="n">SANAS</span>
<span class="n">config</span> <span class="o">=</span> <span class="p">[(</span><span class="s1">&#39;MobileNetV2Space&#39;</span><span class="p">)]</span>
<span class="n">sanas</span> <span class="o">=</span> <span class="n">SANAS</span><span class="p">(</span><span class="n">configs</span><span class="o">=</span><span class="n">config</span><span class="p">)</span>
<span class="nb">input</span> <span class="o">=</span> <span class="n">fluid</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;input&#39;</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">[</span><span class="kc">None</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">32</span><span class="p">,</span> <span class="mi">32</span><span class="p">],</span> <span class="n">dtype</span><span class="o">=</span><span class="s1">&#39;float32&#39;</span><span class="p">)</span>
<span class="n">tokens</span> <span class="o">=</span> <span class="p">([</span><span class="mi">0</span><span class="p">]</span> <span class="o">*</span> <span class="mi">25</span><span class="p">)</span>
<span class="n">archs</span> <span class="o">=</span> <span class="n">sanas</span><span class="o">.</span><span class="n">tokens2arch</span><span class="p">(</span><span class="n">tokens</span><span class="p">)[</span><span class="mi">0</span><span class="p">]</span>
<span class="nb">print</span><span class="p">(</span><span class="n">archs</span><span class="p">(</span><span class="nb">input</span><span class="p">))</span>
</pre></div>
</div>
<dl class="method">
<dt id="current_info">
<code class="descname">current_info</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="headerlink" href="#current_info" title="永久链接至目标"></a></dt>
<dd></dd></dl>

<p>返回当前token和搜索过程中最好的token和reward。</p>
<p><strong>返回:</strong>
搜索过程中最好的token,reward和当前训练的token,形式为dict。</p>
<p><strong>示例代码:</strong></p>
W
wanghaoshuang 已提交
287 288 289 290 291 292 293
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">paddle.fluid</span> <span class="k">as</span> <span class="nn">fluid</span>
<span class="kn">from</span> <span class="nn">paddleslim.nas</span> <span class="kn">import</span> <span class="n">SANAS</span>
<span class="n">config</span> <span class="o">=</span> <span class="p">[(</span><span class="s1">&#39;MobileNetV2Space&#39;</span><span class="p">)]</span>
<span class="n">sanas</span> <span class="o">=</span> <span class="n">SANAS</span><span class="p">(</span><span class="n">configs</span><span class="o">=</span><span class="n">config</span><span class="p">)</span>
<span class="nb">print</span><span class="p">(</span><span class="n">sanas</span><span class="o">.</span><span class="n">current_info</span><span class="p">())</span>
</pre></div>
</div>
W
wanghaoshuang 已提交
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
</div></blockquote>
</div>
</div>


           </div>
          </div>
          <footer>
  
    <div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
      
        <a href="one_shot_api.html" class="btn btn-neutral float-right" title="OneShotNAS" accesskey="n">Next <span class="fa fa-arrow-circle-right"></span></a>
      
      
        <a href="analysis_api.html" class="btn btn-neutral" title="模型分析" accesskey="p"><span class="fa fa-arrow-circle-left"></span> Previous</a>
      
    </div>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2020, paddleslim.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
            URL_ROOT:'../',
            VERSION:'1.0',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
            HAS_SOURCE:  true
        };
    </script>
      <script type="text/javascript" src="../_static/jquery.js"></script>
      <script type="text/javascript" src="../_static/underscore.js"></script>
      <script type="text/javascript" src="../_static/doctools.js"></script>
      <script type="text/javascript" src="../_static/translations.js"></script>
      <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>

  

  
  
    <script type="text/javascript" src="../_static/js/theme.js"></script>
  

  
  
  <script type="text/javascript">
      jQuery(function () {
          SphinxRtdTheme.StickyNav.enable();
      });
  </script>
   

</body>
</html>