super_mnasnet.py 9.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
import paddle
from paddle import fluid
from paddle.fluid.layer_helper import LayerHelper
import numpy as np
from one_shot_nas import OneShotSuperNet

__all__ = ['SuperMnasnet']


class DConvBlock(fluid.dygraph.Layer):
    def __init__(self,
                 name_scope,
                 in_channels,
                 channels,
                 expansion,
                 stride,
                 kernel_size=3,
                 padding=1):
        super(DConvBlock, self).__init__(name_scope)
        self.expansion = expansion
        self.in_channels = in_channels
        self.channels = channels
        self.stride = stride
        self.flops = 0
        self.flops_calculated = False
        self.expand = fluid.dygraph.Conv2D(
            in_channels,
            num_filters=in_channels * expansion,
            filter_size=1,
            stride=1,
            padding=0,
            act=None,
            bias_attr=False)
        self.expand_bn = fluid.dygraph.BatchNorm(
            num_channels=in_channels * expansion, act='relu6')

        self.dconv = fluid.dygraph.Conv2D(
            in_channels * expansion,
            num_filters=in_channels * expansion,
            filter_size=kernel_size,
            stride=stride,
            padding=padding,
            act=None,
            bias_attr=False,
            groups=in_channels * expansion,
            use_cudnn=False)
        self.dconv_bn = fluid.dygraph.BatchNorm(
            num_channels=in_channels * expansion, act='relu6')

        self.project = fluid.dygraph.Conv2D(
            in_channels * expansion,
            num_filters=channels,
            filter_size=1,
            stride=1,
            padding=0,
            act=None,
            bias_attr=False)
        self.project_bn = fluid.dygraph.BatchNorm(
            num_channels=channels, act=None)

        self.shortcut = fluid.dygraph.Conv2D(
            in_channels,
            num_filters=channels,
            filter_size=1,
            stride=1,
            padding=0,
            act=None,
            bias_attr=False)
        self.shortcut_bn = fluid.dygraph.BatchNorm(
            num_channels=channels, act=None)

    def get_flops(self, input, output, op):
        if not self.flops_calculated:
            flops = input.shape[1] * output.shape[1] * (
                op._filter_size**2) * output.shape[2] * output.shape[3]
            if op._groups:
                flops /= op._groups
            self.flops += flops

    def forward(self, inputs):
        expand_x = self.expand_bn(self.expand(inputs))
        self.get_flops(inputs, expand_x, self.expand)
        dconv_x = self.dconv_bn(self.dconv(expand_x))
        self.get_flops(expand_x, dconv_x, self.dconv)
        proj_x = self.project_bn(self.project(dconv_x))
        self.get_flops(dconv_x, proj_x, self.project)
        if self.in_channels != self.channels and self.stride == 1:
            shortcut = self.shortcut_bn(self.shortcut(inputs))
            self.get_flops(inputs, shortcut, self.shortcut)
        elif self.stride == 1:
            shortcut = inputs
        self.flops_calculated = True
        if self.stride == 1:
            out = fluid.layers.elementwise_add(x=proj_x, y=shortcut)
            return out
        return proj_x


class SearchBlock(fluid.dygraph.Layer):
    def __init__(self,
                 name_scope,
                 in_channels,
                 channels,
                 stride,
                 kernel_size=3,
                 padding=1):
        super(SearchBlock, self).__init__(name_scope)
        self._stride = stride
        self.block_list = []
        self.flops = [0 for i in range(10)]
        self.flops_calculated = [False if i < 6 else True for i in range(10)]
        kernels = [3, 5, 7]
        expansions = [3, 6]
        for k in kernels:
            for e in expansions:
                self.block_list.append(
                    DConvBlock(self.full_name(), in_channels, channels, e,
                               stride, k, (k - 1) // 2))
                self.add_sublayer("expansion_{}_kernel_{}".format(e, k),
                                  self.block_list[-1])

    def forward(self, inputs, arch):
        if arch >= 6:
            return inputs
        out = self.block_list[arch](inputs)
        if not self.flops_calculated[arch]:
            self.flops[arch] = self.block_list[arch].flops
            self.flops_calculated[arch] = True
        return out


class AuxiliaryHead(fluid.dygraph.Layer):
    def __init__(self, name_scope, num_classes):
        super(AuxiliaryHead, self).__init__(name_scope)

        self.pool1 = fluid.dygraph.Pool2D(
            5, 'avg', pool_stride=3, pool_padding=0)
        self.conv1 = fluid.dygraph.Conv2D(128, 1, bias_attr=False)
        self.bn1 = fluid.dygraph.BatchNorm(128, act='relu6')
        self.conv2 = fluid.dygraph.Conv2D(768, 2, bias_attr=False)
        self.bn2 = fluid.dygraph.BatchNorm(768, act='relu6')
        self.classifier = fluid.dygraph.FC(num_classes, act='softmax')
        self.layer_helper = LayerHelper(self.full_name(), act='relu6')

    def forward(self, inputs):  #pylint: disable=arguments-differ
        inputs = self.layer_helper.append_activation(inputs)
        inputs = self.pool1(inputs)
        inputs = self.conv1(inputs)
        inputs = self.bn1(inputs)
        inputs = self.conv2(inputs)
        inputs = self.bn2(inputs)
        inputs = self.classifier(inputs)
        return inputs


class SuperMnasnet(OneShotSuperNet):
    def __init__(self,
                 name_scope,
                 input_channels=3,
                 out_channels=1280,
                 repeat_times=[6, 6, 6, 6, 6, 6],
                 stride=[1, 1, 1, 1, 2, 1],
                 channels=[16, 24, 40, 80, 96, 192, 320],
                 use_auxhead=False):
        super(SuperMnasnet, self).__init__(name_scope)
        self.flops = 0
        self.repeat_times = repeat_times
        self.flops_calculated = False
        self.last_tokens = None
        self._conv = fluid.dygraph.Conv2D(
            input_channels, 32, 3, 1, 1, act=None, bias_attr=False)
        self._bn = fluid.dygraph.BatchNorm(32, act='relu6')
        self._sep_conv = fluid.dygraph.Conv2D(
            32,
            32,
            3,
            1,
            1,
            groups=32,
            act=None,
            use_cudnn=False,
            bias_attr=False)
        self._sep_conv_bn = fluid.dygraph.BatchNorm(32, act='relu6')
        self._sep_project = fluid.dygraph.Conv2D(
            32, 16, 1, 1, 0, act=None, bias_attr=False)
        self._sep_project_bn = fluid.dygraph.BatchNorm(16, act='relu6')

        self._final_conv = fluid.dygraph.Conv2D(
            320, out_channels, 1, 1, 0, act=None, bias_attr=False)
        self._final_bn = fluid.dygraph.BatchNorm(out_channels, act='relu6')
        self.stride = stride
        self.block_list = []
        self.use_auxhead = use_auxhead

        for _iter, _stride in enumerate(self.stride):
            repeat_block = []
            for _ind in range(self.repeat_times[_iter]):
                if _ind == 0:
                    block = SearchBlock(self.full_name(), channels[_iter],
                                        channels[_iter + 1], _stride)
                else:
                    block = SearchBlock(self.full_name(), channels[_iter + 1],
                                        channels[_iter + 1], 1)
                self.add_sublayer("block_{}_{}".format(_iter, _ind), block)
                repeat_block.append(block)
            self.block_list.append(repeat_block)
        if self.use_auxhead:
            self.auxhead = AuxiliaryHead(self.full_name(), 10)

    def init_tokens(self):
        return [
            3, 3, 6, 6, 6, 6, 3, 3, 3, 6, 6, 6, 3, 3, 3, 3, 6, 6, 3, 3, 3, 6,
            6, 6, 3, 3, 3, 6, 6, 6, 3, 6, 6, 6, 6, 6
        ]

    def range_table(self):
        max_v = [
            6, 6, 10, 10, 10, 10, 6, 6, 6, 10, 10, 10, 6, 6, 6, 6, 10, 10, 6,
            6, 6, 10, 10, 10, 6, 6, 6, 10, 10, 10, 6, 10, 10, 10, 10, 10
        ]
        return (len(max_v) * [0], max_v)

    def get_flops(self, input, output, op):
        if not self.flops_calculated:
            flops = input.shape[1] * output.shape[1] * (
                op._filter_size**2) * output.shape[2] * output.shape[3]
            if op._groups:
                flops /= op._groups
            self.flops += flops

    def _forward_impl(self, inputs, tokens=None):
        if isinstance(tokens, np.ndarray) and not (tokens == self.last_tokens).all()\
           or not isinstance(tokens, np.ndarray) and not tokens == self.last_tokens:
            self.flops_calculated = False
            self.flops = 0
        self.last_tokens = tokens
        x = self._bn(self._conv(inputs))
        self.get_flops(inputs, x, self._conv)
        sep_x = self._sep_conv_bn(self._sep_conv(x))
        self.get_flops(x, sep_x, self._sep_conv)
        proj_x = self._sep_project_bn(self._sep_project(sep_x))
        self.get_flops(sep_x, proj_x, self._sep_project)
        x = proj_x
        for ind in range(len(self.block_list)):
            for b_ind, block in enumerate(self.block_list[ind]):
                x = fluid.layers.dropout(block(x, tokens[ind * 6 + b_ind]), 0.)
                if not self.flops_calculated:
                    self.flops += block.flops[tokens[ind * 6 + b_ind]]
            if ind == len(self.block_list) * 2 // 3 - 1 and self.use_auxhead:
                fc_aux = self.auxhead(x)
        final_x = self._final_bn(self._final_conv(x))
        self.get_flops(x, final_x, self._final_conv)
        #        x = self.global_pooling(final_x)
        self.flops_calculated = True
        if self.use_auxhead:
            return final_x, fc_aux
        return final_x