提交 fca7ec85 编写于 作者: W wuzewu

Update ocrnet

上级 3b3a69b7
......@@ -14,36 +14,41 @@
import os
import paddle.fluid as fluid
from paddle.fluid.dygraph import Sequential, Conv2D
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddleseg.cvlibs import manager
from paddleseg.models.common.layer_libs import ConvBnRelu
from paddleseg import utils
from paddleseg.cvlibs import manager, param_init
from paddleseg.models.common.layer_libs import ConvBNReLU, AuxLayer
class SpatialGatherBlock(fluid.dygraph.Layer):
class SpatialGatherBlock(nn.Layer):
"""Aggregation layer to compute the pixel-region representation"""
def forward(self, pixels, regions):
n, c, h, w = pixels.shape
_, k, _, _ = regions.shape
# pixels: from (n, c, h, w) to (n, h*w, c)
pixels = fluid.layers.reshape(pixels, (n, c, h * w))
pixels = fluid.layers.transpose(pixels, (0, 2, 1))
pixels = paddle.reshape(pixels, (n, c, h * w))
pixels = paddle.transpose(pixels, (0, 2, 1))
# regions: from (n, k, h, w) to (n, k, h*w)
regions = fluid.layers.reshape(regions, (n, k, h * w))
regions = fluid.layers.softmax(regions, axis=2)
regions = paddle.reshape(regions, (n, k, h * w))
regions = F.softmax(regions, axis=2)
# feats: from (n, k, c) to (n, c, k, 1)
feats = fluid.layers.matmul(regions, pixels)
feats = fluid.layers.transpose(feats, (0, 2, 1))
feats = fluid.layers.unsqueeze(feats, axes=[-1])
feats = paddle.bmm(regions, pixels)
feats = paddle.transpose(feats, (0, 2, 1))
feats = paddle.unsqueeze(feats, axis=-1)
return feats
class SpatialOCRModule(fluid.dygraph.Layer):
class SpatialOCRModule(nn.Layer):
"""Aggregate the global object representation to update the representation for each pixel"""
def __init__(self,
in_channels,
key_channels,
......@@ -53,163 +58,180 @@ class SpatialOCRModule(fluid.dygraph.Layer):
self.attention_block = ObjectAttentionBlock(in_channels, key_channels)
self.dropout_rate = dropout_rate
self.conv1x1 = Conv2D(2 * in_channels, out_channels, 1)
self.conv1x1 = nn.Sequential(
nn.Conv2d(2 * in_channels, out_channels, 1), nn.Dropout2d(0.1))
def forward(self, pixels, regions):
context = self.attention_block(pixels, regions)
feats = fluid.layers.concat([context, pixels], axis=1)
feats = paddle.concat([context, pixels], axis=1)
feats = self.conv1x1(feats)
feats = fluid.layers.dropout(feats, self.dropout_rate)
return feats
class ObjectAttentionBlock(fluid.dygraph.Layer):
class ObjectAttentionBlock(nn.Layer):
"""A self-attention module."""
def __init__(self, in_channels, key_channels):
super(ObjectAttentionBlock, self).__init__()
self.in_channels = in_channels
self.key_channels = key_channels
self.f_pixel = Sequential(
ConvBnRelu(in_channels, key_channels, 1),
ConvBnRelu(key_channels, key_channels, 1))
self.f_pixel = nn.Sequential(
ConvBNReLU(in_channels, key_channels, 1),
ConvBNReLU(key_channels, key_channels, 1))
self.f_object = Sequential(
ConvBnRelu(in_channels, key_channels, 1),
ConvBnRelu(key_channels, key_channels, 1))
self.f_object = nn.Sequential(
ConvBNReLU(in_channels, key_channels, 1),
ConvBNReLU(key_channels, key_channels, 1))
self.f_down = ConvBnRelu(in_channels, key_channels, 1)
self.f_down = ConvBNReLU(in_channels, key_channels, 1)
self.f_up = ConvBnRelu(key_channels, in_channels, 1)
self.f_up = ConvBNReLU(key_channels, in_channels, 1)
def forward(self, x, proxy):
n, _, h, w = x.shape
# query : from (n, c1, h1, w1) to (n, h1*w1, key_channels)
query = self.f_pixel(x)
query = fluid.layers.reshape(query, (n, self.key_channels, -1))
query = fluid.layers.transpose(query, (0, 2, 1))
query = paddle.reshape(query, (n, self.key_channels, -1))
query = paddle.transpose(query, (0, 2, 1))
# key : from (n, c2, h2, w2) to (n, key_channels, h2*w2)
key = self.f_object(proxy)
key = fluid.layers.reshape(key, (n, self.key_channels, -1))
key = paddle.reshape(key, (n, self.key_channels, -1))
# value : from (n, c2, h2, w2) to (n, h2*w2, key_channels)
value = self.f_down(proxy)
value = fluid.layers.reshape(value, (n, self.key_channels, -1))
value = fluid.layers.transpose(value, (0, 2, 1))
value = paddle.reshape(value, (n, self.key_channels, -1))
value = paddle.transpose(value, (0, 2, 1))
# sim_map (n, h1*w1, h2*w2)
sim_map = fluid.layers.matmul(query, key)
sim_map = paddle.bmm(query, key)
sim_map = (self.key_channels**-.5) * sim_map
sim_map = fluid.layers.softmax(sim_map, axis=-1)
sim_map = F.softmax(sim_map, axis=-1)
# context from (n, h1*w1, key_channels) to (n , out_channels, h1, w1)
context = fluid.layers.matmul(sim_map, value)
context = fluid.layers.transpose(context, (0, 2, 1))
context = fluid.layers.reshape(context, (n, self.key_channels, h, w))
context = paddle.bmm(sim_map, value)
context = paddle.transpose(context, (0, 2, 1))
context = paddle.reshape(context, (n, self.key_channels, h, w))
context = self.f_up(context)
return context
@manager.MODELS.add_component
class OCRNet(fluid.dygraph.Layer):
class OCRHead(nn.Layer):
"""
The OCR Head.
Args:
num_classes(int): the unique number of target classes.
in_channels(tuple): the number of input channels.
ocr_mid_channels(int): the number of middle channels in OCRHead.
ocr_key_channels(int): the number of key channels in ObjectAttentionBlock.
"""
def __init__(self,
num_classes,
backbone,
model_pretrained=None,
in_channels=None,
ocr_mid_channels=512,
ocr_key_channels=256,
ignore_index=255):
super(OCRNet, self).__init__()
ocr_key_channels=256):
super(OCRHead, self).__init__()
self.ignore_index = ignore_index
self.num_classes = num_classes
self.EPS = 1e-5
self.backbone = backbone
self.spatial_gather = SpatialGatherBlock()
self.spatial_ocr = SpatialOCRModule(ocr_mid_channels, ocr_key_channels,
ocr_mid_channels)
self.conv3x3_ocr = ConvBnRelu(
in_channels, ocr_mid_channels, 3, padding=1)
self.cls_head = Conv2D(ocr_mid_channels, self.num_classes, 1)
self.aux_head = Sequential(
ConvBnRelu(in_channels, in_channels, 3, padding=1),
Conv2D(in_channels, self.num_classes, 1))
self.indices = [-2, -1] if len(in_channels) > 1 else [-1, -1]
self.init_weight(model_pretrained)
self.conv3x3_ocr = ConvBNReLU(
in_channels[self.indices[1]], ocr_mid_channels, 3, padding=1)
self.cls_head = nn.Conv2d(ocr_mid_channels, self.num_classes, 1)
self.aux_head = AuxLayer(in_channels[self.indices[0]],
in_channels[self.indices[0]], self.num_classes)
self.init_weight()
def forward(self, x, label=None):
feats = self.backbone(x)
feat_shallow, feat_deep = x[self.indices[0]], x[self.indices[1]]
soft_regions = self.aux_head(feats)
pixels = self.conv3x3_ocr(feats)
soft_regions = self.aux_head(feat_shallow)
pixels = self.conv3x3_ocr(feat_deep)
object_regions = self.spatial_gather(pixels, soft_regions)
ocr = self.spatial_ocr(pixels, object_regions)
logit = self.cls_head(ocr)
logit = fluid.layers.resize_bilinear(logit, x.shape[2:])
if self.training:
soft_regions = fluid.layers.resize_bilinear(soft_regions,
x.shape[2:])
cls_loss = self._get_loss(logit, label)
aux_loss = self._get_loss(soft_regions, label)
return cls_loss + 0.4 * aux_loss
score_map = fluid.layers.softmax(logit, axis=1)
score_map = fluid.layers.transpose(score_map, [0, 2, 3, 1])
pred = fluid.layers.argmax(score_map, axis=3)
pred = fluid.layers.unsqueeze(pred, axes=[3])
return pred, score_map
def init_weight(self, pretrained_model=None):
return [logit, soft_regions]
def init_weight(self):
"""Initialize the parameters of model parts."""
for sublayer in self.sublayers():
if isinstance(sublayer, nn.Conv2d):
param_init.normal_init(sublayer.weight, scale=0.001)
elif isinstance(sublayer, nn.SyncBatchNorm):
param_init.constant_init(sublayer.weight, value=1)
param_init.constant_init(sublayer.bias, value=0)
@manager.MODELS.add_component
class OCRNet(nn.Layer):
"""
The OCRNet implementation based on PaddlePaddle.
The orginal artile refers to
Yuan, Yuhui, et al. "Object-Contextual Representations for Semantic Segmentation"
(https://arxiv.org/pdf/1909.11065.pdf)
Args:
num_classes(int): the unique number of target classes.
backbone(Paddle.nn.Layer): backbone network.
pretrained(str): the path or url of pretrained model. Defaullt to None.
backbone_indices(tuple): two values in the tuple indicate the indices of output of backbone.
the first index will be taken as a deep-supervision feature in auxiliary layer;
the second one will be taken as input of pixel representation.
ocr_mid_channels(int): the number of middle channels in OCRHead.
ocr_key_channels(int): the number of key channels in ObjectAttentionBlock.
"""
def __init__(self,
num_classes,
backbone,
pretrained=None,
backbone_indices=None,
ocr_mid_channels=512,
ocr_key_channels=256):
super(OCRNet, self).__init__()
self.backbone = backbone
self.backbone_indices = backbone_indices
in_channels = [self.backbone.channels[i] for i in backbone_indices]
self.head = OCRHead(
num_classes=num_classes,
in_channels=in_channels,
ocr_mid_channels=ocr_mid_channels,
ocr_key_channels=ocr_key_channels)
self.init_weight(pretrained)
def forward(self, x, label=None):
feats = self.backbone(x)
feats = [feats[i] for i in self.backbone_indices]
preds = self.head(feats, label)
preds = [F.resize_bilinear(pred, x.shape[2:]) for pred in preds]
return preds
def init_weight(self, pretrained=None):
"""
Initialize the parameters of model parts.
Args:
pretrained_model ([str], optional): the path of pretrained model.. Defaults to None.
pretrained ([str], optional): the path of pretrained model.. Defaults to None.
"""
if pretrained_model is not None:
if os.path.exists(pretrained_model):
utils.load_pretrained_model(self, pretrained_model)
if pretrained is not None:
if os.path.exists(pretrained):
utils.load_pretrained_model(self, pretrained)
else:
raise Exception('Pretrained model is not found: {}'.format(
pretrained_model))
def _get_loss(self, logit, label):
"""
compute forward loss of the model
Args:
logit (tensor): the logit of model output
label (tensor): ground truth
Returns:
avg_loss (tensor): forward loss
"""
logit = fluid.layers.transpose(logit, [0, 2, 3, 1])
label = fluid.layers.transpose(label, [0, 2, 3, 1])
mask = label != self.ignore_index
mask = fluid.layers.cast(mask, 'float32')
loss, probs = fluid.layers.softmax_with_cross_entropy(
logit,
label,
ignore_index=self.ignore_index,
return_softmax=True,
axis=-1)
loss = loss * mask
avg_loss = fluid.layers.mean(loss) / (
fluid.layers.mean(mask) + self.EPS)
label.stop_gradient = True
mask.stop_gradient = True
return avg_loss
raise Exception(
'Pretrained model is not found: {}'.format(pretrained))
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册