Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleSeg
提交
f7e5320e
P
PaddleSeg
项目概览
PaddlePaddle
/
PaddleSeg
通知
285
Star
8
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
53
列表
看板
标记
里程碑
合并请求
3
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleSeg
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
53
Issue
53
列表
看板
标记
里程碑
合并请求
3
合并请求
3
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f7e5320e
编写于
9月 23, 2020
作者:
C
chenguowei01
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/PaddleSeg
into dygraph
上级
70c0212a
53f1d1e4
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
218 addition
and
119 deletion
+218
-119
dygraph/configs/_base_/cityscapes.yml
dygraph/configs/_base_/cityscapes.yml
+0
-1
dygraph/configs/_base_/optic_disc_seg.yml
dygraph/configs/_base_/optic_disc_seg.yml
+0
-1
dygraph/paddleseg/models/ann.py
dygraph/paddleseg/models/ann.py
+66
-29
dygraph/paddleseg/models/deeplab.py
dygraph/paddleseg/models/deeplab.py
+7
-7
dygraph/paddleseg/models/fast_scnn.py
dygraph/paddleseg/models/fast_scnn.py
+22
-26
dygraph/paddleseg/models/gcnet.py
dygraph/paddleseg/models/gcnet.py
+60
-27
dygraph/paddleseg/models/pspnet.py
dygraph/paddleseg/models/pspnet.py
+63
-28
未找到文件。
dygraph/configs/_base_/cityscapes.yml
浏览文件 @
f7e5320e
batch_size
:
4
iters
:
100000
learning_rate
:
0.01
train_dataset
:
type
:
Cityscapes
...
...
dygraph/configs/_base_/optic_disc_seg.yml
浏览文件 @
f7e5320e
batch_size
:
4
iters
:
10000
learning_rate
:
0.01
train_dataset
:
type
:
OpticDiscSeg
...
...
dygraph/paddleseg/models/ann.py
浏览文件 @
f7e5320e
...
...
@@ -19,7 +19,7 @@ import paddle.nn.functional as F
from
paddle
import
nn
from
paddleseg.cvlibs
import
manager
from
paddleseg.models.common
import
layer_libs
from
paddleseg.models.common
.layer_libs
import
ConvBNReLU
,
ConvBN
,
AuxLayer
from
paddleseg.utils
import
utils
...
...
@@ -32,11 +32,62 @@ class ANN(nn.Layer):
Zhen, Zhu, et al. "Asymmetric Non-local Neural Networks for Semantic Segmentation."
(https://arxiv.org/pdf/1908.07678.pdf)
Args:
num_classes (int): the unique number of target classes.
backbone (Paddle.nn.Layer): backbone network, currently support Resnet50/101.
model_pretrained (str): the path of pretrained model. Default to None.
backbone_indices (tuple): two values in the tuple indicate the indices of output of backbone.
key_value_channels (int): the key and value channels of self-attention map in both AFNB and APNB modules.
Default to 256.
inter_channels (int): both input and output channels of APNB modules.
psp_size (tuple): the out size of pooled feature maps. Default to (1, 3, 6, 8).
enable_auxiliary_loss (bool): a bool values indicates whether adding auxiliary loss. Default to True.
pretrained (str): the path of pretrained model. Default to None.
"""
def
__init__
(
self
,
num_classes
,
backbone
,
backbone_indices
=
(
2
,
3
),
key_value_channels
=
256
,
inter_channels
=
512
,
psp_size
=
(
1
,
3
,
6
,
8
),
enable_auxiliary_loss
=
True
,
pretrained
=
None
,):
super
(
ANN
,
self
).
__init__
()
self
.
backbone
=
backbone
backbone_channels
=
[
backbone
.
feat_channels
[
i
]
for
i
in
backbone_indices
]
self
.
head
=
ANNHead
(
num_classes
,
backbone_indices
,
backbone_channels
,
key_value_channels
,
inter_channels
,
psp_size
,
enable_auxiliary_loss
)
utils
.
load_entire_model
(
self
,
pretrained
)
def
forward
(
self
,
input
):
feat_list
=
self
.
backbone
(
input
)
logit_list
=
self
.
head
(
feat_list
)
return
[
F
.
resize_bilinear
(
logit
,
input
.
shape
[
2
:])
for
logit
in
logit_list
]
class
ANNHead
(
nn
.
Layer
):
"""
The ANNHead implementation.
It mainly consists of AFNB and APNB modules.
Args:
num_classes (int): the unique number of target classes.
backbone (Paddle.nn.Layer): backbone network, currently support Resnet50/101.
model_pretrained (str): the path of pretrained model. Default to None.
backbone_indices (tuple): two values in the tuple indicate the indices of output of backbone.
the first index will be taken as low-level features; the second one will be
...
...
@@ -53,17 +104,13 @@ class ANN(nn.Layer):
def
__init__
(
self
,
num_classes
,
backbone
,
model_pretrained
=
None
,
backbone_indices
=
(
2
,
3
),
backbone_channels
=
(
1024
,
2048
),
key_value_channels
=
256
,
inter_channels
=
512
,
psp_size
=
(
1
,
3
,
6
,
8
),
enable_auxiliary_loss
=
True
):
super
(
ANN
,
self
).
__init__
()
self
.
backbone
=
backbone
super
(
ANNHead
,
self
).
__init__
()
low_in_channels
=
backbone_channels
[
0
]
high_in_channels
=
backbone_channels
[
1
]
...
...
@@ -79,7 +126,7 @@ class ANN(nn.Layer):
psp_size
=
psp_size
)
self
.
context
=
nn
.
Sequential
(
layer_libs
.
ConvBNReLU
(
ConvBNReLU
(
in_channels
=
high_in_channels
,
out_channels
=
inter_channels
,
kernel_size
=
3
,
...
...
@@ -95,7 +142,7 @@ class ANN(nn.Layer):
self
.
cls
=
nn
.
Conv2d
(
in_channels
=
inter_channels
,
out_channels
=
num_classes
,
kernel_size
=
1
)
self
.
auxlayer
=
layer_libs
.
AuxLayer
(
self
.
auxlayer
=
AuxLayer
(
in_channels
=
low_in_channels
,
inter_channels
=
low_in_channels
//
2
,
out_channels
=
num_classes
,
...
...
@@ -104,41 +151,31 @@ class ANN(nn.Layer):
self
.
backbone_indices
=
backbone_indices
self
.
enable_auxiliary_loss
=
enable_auxiliary_loss
self
.
init_weight
(
model_pretrained
)
self
.
init_weight
()
def
forward
(
self
,
input
,
label
=
None
):
def
forward
(
self
,
feat_list
):
logit_list
=
[]
_
,
feat_list
=
self
.
backbone
(
input
)
low_level_x
=
feat_list
[
self
.
backbone_indices
[
0
]]
high_level_x
=
feat_list
[
self
.
backbone_indices
[
1
]]
x
=
self
.
fusion
(
low_level_x
,
high_level_x
)
x
=
self
.
context
(
x
)
logit
=
self
.
cls
(
x
)
logit
=
F
.
resize_bilinear
(
logit
,
input
.
shape
[
2
:])
logit_list
.
append
(
logit
)
if
self
.
enable_auxiliary_loss
:
auxiliary_logit
=
self
.
auxlayer
(
low_level_x
)
auxiliary_logit
=
F
.
resize_bilinear
(
auxiliary_logit
,
input
.
shape
[
2
:])
logit_list
.
append
(
auxiliary_logit
)
return
logit_list
def
init_weight
(
self
,
pretrained_model
=
None
):
def
init_weight
(
self
):
"""
Initialize the parameters of model parts.
Args:
pretrained_model ([str], optional): the pretrained_model path of backbone. Defaults to None.
"""
pass
if
pretrained_model
is
not
None
:
if
os
.
path
.
exists
(
pretrained_model
):
utils
.
load_pretrained_model
(
self
.
backbone
,
pretrained_model
)
class
AFNB
(
nn
.
Layer
):
"""
Asymmetric Fusion Non-local Block
...
...
@@ -171,7 +208,7 @@ class AFNB(nn.Layer):
key_channels
,
value_channels
,
out_channels
,
size
)
for
size
in
sizes
])
self
.
conv_bn
=
layer_libs
.
ConvBn
(
self
.
conv_bn
=
ConvBN
(
in_channels
=
out_channels
+
high_in_channels
,
out_channels
=
out_channels
,
kernel_size
=
1
)
...
...
@@ -218,7 +255,7 @@ class APNB(nn.Layer):
SelfAttentionBlock_APNB
(
in_channels
,
out_channels
,
key_channels
,
value_channels
,
size
)
for
size
in
sizes
])
self
.
conv_bn
=
layer_libs
.
ConvBNReLU
(
self
.
conv_bn
=
ConvBNReLU
(
in_channels
=
in_channels
*
2
,
out_channels
=
out_channels
,
kernel_size
=
1
)
...
...
@@ -279,11 +316,11 @@ class SelfAttentionBlock_AFNB(nn.Layer):
if
out_channels
==
None
:
self
.
out_channels
=
high_in_channels
self
.
pool
=
nn
.
Pool2D
(
pool_size
=
(
scale
,
scale
),
pool_type
=
"max"
)
self
.
f_key
=
layer_libs
.
ConvBNReLU
(
self
.
f_key
=
ConvBNReLU
(
in_channels
=
low_in_channels
,
out_channels
=
key_channels
,
kernel_size
=
1
)
self
.
f_query
=
layer_libs
.
ConvBNReLU
(
self
.
f_query
=
ConvBNReLU
(
in_channels
=
high_in_channels
,
out_channels
=
key_channels
,
kernel_size
=
1
)
...
...
@@ -357,7 +394,7 @@ class SelfAttentionBlock_APNB(nn.Layer):
self
.
value_channels
=
value_channels
self
.
pool
=
nn
.
Pool2D
(
pool_size
=
(
scale
,
scale
),
pool_type
=
"max"
)
self
.
f_key
=
layer_libs
.
ConvBNReLU
(
self
.
f_key
=
ConvBNReLU
(
in_channels
=
self
.
in_channels
,
out_channels
=
self
.
key_channels
,
kernel_size
=
1
)
...
...
dygraph/paddleseg/models/deeplab.py
浏览文件 @
f7e5320e
...
...
@@ -18,7 +18,8 @@ import paddle
import
paddle.nn.functional
as
F
from
paddle
import
nn
from
paddleseg.cvlibs
import
manager
from
paddleseg.models.common
import
pyramid_pool
,
layer_libs
from
paddleseg.models.common
import
pyramid_pool
from
paddleseg.models.common.layer_libs
import
ConvBNReLU
,
DepthwiseConvBNReLU
,
AuxLayer
from
paddleseg.utils
import
utils
__all__
=
[
'DeepLabV3P'
,
'DeepLabV3'
]
...
...
@@ -47,8 +48,7 @@ class DeepLabV3P(nn.Layer):
if output_stride=16, aspp_ratios should be set as (1, 6, 12, 18).
if output_stride=8, aspp_ratios is (1, 12, 24, 36).
aspp_out_channels (int): the output channels of ASPP module.
pretrained (str): the path of pretrained model for fine tuning.
pretrained (str): the path of pretrained model. Default to None.
"""
def
__init__
(
self
,
...
...
@@ -94,7 +94,7 @@ class DeepLabV3PHead(nn.Layer):
each stage, so we set default (0, 3), which means taking feature map of the first
stage in backbone as low-level feature used in Decoder, and feature map of the fourth
stage as input of ASPP.
backbone_channels (tuple):
returned channels of backbone
backbone_channels (tuple):
the same length with "backbone_indices". It indicates the channels of corresponding index.
aspp_ratios (tuple): the dilation rate using in ASSP module.
if output_stride=16, aspp_ratios should be set as (1, 6, 12, 18).
if output_stride=8, aspp_ratios is (1, 12, 24, 36).
...
...
@@ -231,12 +231,12 @@ class Decoder(nn.Layer):
def
__init__
(
self
,
num_classes
,
in_channels
):
super
(
Decoder
,
self
).
__init__
()
self
.
conv_bn_relu1
=
layer_libs
.
ConvBNReLU
(
self
.
conv_bn_relu1
=
ConvBNReLU
(
in_channels
=
in_channels
,
out_channels
=
48
,
kernel_size
=
1
)
self
.
conv_bn_relu2
=
layer_libs
.
DepthwiseConvBNReLU
(
self
.
conv_bn_relu2
=
DepthwiseConvBNReLU
(
in_channels
=
304
,
out_channels
=
256
,
kernel_size
=
3
,
padding
=
1
)
self
.
conv_bn_relu3
=
layer_libs
.
DepthwiseConvBNReLU
(
self
.
conv_bn_relu3
=
DepthwiseConvBNReLU
(
in_channels
=
256
,
out_channels
=
256
,
kernel_size
=
3
,
padding
=
1
)
self
.
conv
=
nn
.
Conv2d
(
in_channels
=
256
,
out_channels
=
num_classes
,
kernel_size
=
1
)
...
...
dygraph/paddleseg/models/fast_scnn.py
浏览文件 @
f7e5320e
...
...
@@ -14,9 +14,11 @@
import
paddle.nn.functional
as
F
from
paddle
import
nn
from
paddleseg.cvlibs
import
manager
from
paddleseg.models.common
import
layer_libs
,
pyramid_pool
from
paddleseg.cvlibs
import
manager
from
paddleseg.models.common
import
pyramid_pool
from
paddleseg.models.common.layer_libs
import
ConvBNReLU
,
DepthwiseConvBNReLU
,
AuxLayer
from
paddleseg.utils
import
utils
@
manager
.
MODELS
.
add_component
class
FastSCNN
(
nn
.
Layer
):
...
...
@@ -33,15 +35,15 @@ class FastSCNN(nn.Layer):
Args:
num_classes (int): the unique number of target classes. Default to 2.
model_pretrained (str): the path of pretrained model. Default to None.
enable_auxiliary_loss (bool): a bool values indicates whether adding auxiliary loss.
if true, auxiliary loss will be added after LearningToDownsample module, where the weight is 0.4. Default to False.
pretrained (str): the path of pretrained model. Default to None.
"""
def
__init__
(
self
,
num_classes
,
model_pretrained
=
Non
e
,
enable_auxiliary_loss
=
Tru
e
):
enable_auxiliary_loss
=
Tru
e
,
pretrained
=
Non
e
):
super
(
FastSCNN
,
self
).
__init__
()
...
...
@@ -52,11 +54,12 @@ class FastSCNN(nn.Layer):
self
.
classifier
=
Classifier
(
128
,
num_classes
)
if
enable_auxiliary_loss
:
self
.
auxlayer
=
layer_libs
.
AuxLayer
(
64
,
32
,
num_classes
)
self
.
auxlayer
=
AuxLayer
(
64
,
32
,
num_classes
)
self
.
enable_auxiliary_loss
=
enable_auxiliary_loss
self
.
init_weight
(
model_pretrained
)
self
.
init_weight
()
utils
.
load_entire_model
(
self
,
pretrained
)
def
forward
(
self
,
input
,
label
=
None
):
...
...
@@ -76,18 +79,11 @@ class FastSCNN(nn.Layer):
return
logit_list
def
init_weight
(
self
,
pretrained_model
=
None
):
def
init_weight
(
self
):
"""
Initialize the parameters of model parts.
Args:
pretrained_model ([str], optional): the path of pretrained model. Defaults to None.
"""
if
pretrained_model
is
not
None
:
if
os
.
path
.
exists
(
pretrained_model
):
utils
.
load_pretrained_model
(
self
,
pretrained_model
)
else
:
raise
Exception
(
'Pretrained model is not found: {}'
.
format
(
pretrained_model
))
pass
class
LearningToDownsample
(
nn
.
Layer
):
...
...
@@ -105,15 +101,15 @@ class LearningToDownsample(nn.Layer):
def
__init__
(
self
,
dw_channels1
=
32
,
dw_channels2
=
48
,
out_channels
=
64
):
super
(
LearningToDownsample
,
self
).
__init__
()
self
.
conv_bn_relu
=
layer_libs
.
ConvBNReLU
(
self
.
conv_bn_relu
=
ConvBNReLU
(
in_channels
=
3
,
out_channels
=
dw_channels1
,
kernel_size
=
3
,
stride
=
2
)
self
.
dsconv_bn_relu1
=
layer_libs
.
DepthwiseConvBNReLU
(
self
.
dsconv_bn_relu1
=
DepthwiseConvBNReLU
(
in_channels
=
dw_channels1
,
out_channels
=
dw_channels2
,
kernel_size
=
3
,
stride
=
2
,
padding
=
1
)
self
.
dsconv_bn_relu2
=
layer_libs
.
DepthwiseConvBNReLU
(
self
.
dsconv_bn_relu2
=
DepthwiseConvBNReLU
(
in_channels
=
dw_channels2
,
out_channels
=
out_channels
,
kernel_size
=
3
,
...
...
@@ -208,13 +204,13 @@ class LinearBottleneck(nn.Layer):
expand_channels
=
in_channels
*
expansion
self
.
block
=
nn
.
Sequential
(
# pw
layer_libs
.
ConvBNReLU
(
ConvBNReLU
(
in_channels
=
in_channels
,
out_channels
=
expand_channels
,
kernel_size
=
1
,
bias_attr
=
False
),
# dw
layer_libs
.
ConvBNReLU
(
ConvBNReLU
(
in_channels
=
expand_channels
,
out_channels
=
expand_channels
,
kernel_size
=
3
,
...
...
@@ -253,7 +249,7 @@ class FeatureFusionModule(nn.Layer):
super
(
FeatureFusionModule
,
self
).
__init__
()
# There only depth-wise conv is used WITHOUT point-wise conv
self
.
dwconv
=
layer_libs
.
ConvBNReLU
(
self
.
dwconv
=
ConvBNReLU
(
in_channels
=
low_in_channels
,
out_channels
=
out_channels
,
kernel_size
=
3
,
...
...
@@ -289,9 +285,9 @@ class FeatureFusionModule(nn.Layer):
class
Classifier
(
nn
.
Layer
):
"""
The Classifier module implemetation.
The Classifier module impleme
n
tation.
This module consists of two depth-w
si
e conv and one conv.
This module consists of two depth-w
is
e conv and one conv.
Args:
input_channels (int): the input channels to this module.
...
...
@@ -301,13 +297,13 @@ class Classifier(nn.Layer):
def
__init__
(
self
,
input_channels
,
num_classes
):
super
(
Classifier
,
self
).
__init__
()
self
.
dsconv1
=
layer_libs
.
DepthwiseConvBNReLU
(
self
.
dsconv1
=
DepthwiseConvBNReLU
(
in_channels
=
input_channels
,
out_channels
=
input_channels
,
kernel_size
=
3
,
padding
=
1
)
self
.
dsconv2
=
layer_libs
.
DepthwiseConvBNReLU
(
self
.
dsconv2
=
DepthwiseConvBNReLU
(
in_channels
=
input_channels
,
out_channels
=
input_channels
,
kernel_size
=
3
,
...
...
dygraph/paddleseg/models/gcnet.py
浏览文件 @
f7e5320e
...
...
@@ -18,10 +18,12 @@ import paddle
import
paddle.nn.functional
as
F
from
paddle
import
nn
from
paddleseg.cvlibs
import
manager
from
paddleseg.models.common
import
layer_libs
from
paddleseg.models.common
.layer_libs
import
ConvBNReLU
,
AuxLayer
from
paddleseg.utils
import
utils
@
manager
.
MODELS
.
add_component
class
GCNet
(
nn
.
Layer
):
"""
...
...
@@ -34,7 +36,54 @@ class GCNet(nn.Layer):
Args:
num_classes (int): the unique number of target classes.
backbone (Paddle.nn.Layer): backbone network, currently support Resnet50/101.
model_pretrained (str): the path of pretrained model. Default to None.
backbone_indices (tuple): two values in the tuple indicate the indices of output of backbone.
gc_channels (int): input channels to Global Context Block. Default to 512.
ratio (float): it indicates the ratio of attention channels and gc_channels. Default to 1/4.
enable_auxiliary_loss (bool): a bool values indicates whether adding auxiliary loss. Default to True.
pretrained (str): the path of pretrained model. Default to None.
"""
def
__init__
(
self
,
num_classes
,
backbone
,
backbone_indices
=
(
2
,
3
),
gc_channels
=
512
,
ratio
=
1
/
4
,
enable_auxiliary_loss
=
True
,
pretrained
=
None
):
super
(
GCNet
,
self
).
__init__
()
self
.
backbone
=
backbone
backbone_channels
=
[
backbone
.
feat_channels
[
i
]
for
i
in
backbone_indices
]
self
.
head
=
GCNetHead
(
num_classes
,
backbone_indices
,
backbone_channels
,
gc_channels
,
ratio
,
enable_auxiliary_loss
)
utils
.
load_entire_model
(
self
,
pretrained
)
def
forward
(
self
,
input
):
feat_list
=
self
.
backbone
(
input
)
logit_list
=
self
.
head
(
feat_list
)
return
[
F
.
resize_bilinear
(
logit
,
input
.
shape
[
2
:])
for
logit
in
logit_list
]
class
GCNetHead
(
nn
.
Layer
):
"""
The GCNetHead implementation.
Args:
num_classes (int): the unique number of target classes.
backbone_indices (tuple): two values in the tuple indicate the indices of output of backbone.
the first index will be taken as a deep-supervision feature in auxiliary layer;
the second one will be taken as input of GlobalContextBlock. Usually backbone
...
...
@@ -49,21 +98,16 @@ class GCNet(nn.Layer):
def
__init__
(
self
,
num_classes
,
backbone
,
model_pretrained
=
None
,
backbone_indices
=
(
2
,
3
),
backbone_channels
=
(
1024
,
2048
),
gc_channels
=
512
,
ratio
=
1
/
4
,
enable_auxiliary_loss
=
True
,
pretrained_model
=
None
):
super
(
GCNet
,
self
).
__init__
()
enable_auxiliary_loss
=
True
):
s
elf
.
backbone
=
backbone
s
uper
(
GCNetHead
,
self
).
__init__
()
in_channels
=
backbone_channels
[
1
]
self
.
conv_bn_relu1
=
layer_libs
.
ConvBNReLU
(
self
.
conv_bn_relu1
=
ConvBNReLU
(
in_channels
=
in_channels
,
out_channels
=
gc_channels
,
kernel_size
=
3
,
...
...
@@ -71,13 +115,13 @@ class GCNet(nn.Layer):
self
.
gc_block
=
GlobalContextBlock
(
in_channels
=
gc_channels
,
ratio
=
ratio
)
self
.
conv_bn_relu2
=
layer_libs
.
ConvBNReLU
(
self
.
conv_bn_relu2
=
ConvBNReLU
(
in_channels
=
gc_channels
,
out_channels
=
gc_channels
,
kernel_size
=
3
,
padding
=
1
)
self
.
conv_bn_relu3
=
layer_libs
.
ConvBNReLU
(
self
.
conv_bn_relu3
=
ConvBNReLU
(
in_channels
=
in_channels
+
gc_channels
,
out_channels
=
gc_channels
,
kernel_size
=
3
,
...
...
@@ -87,7 +131,7 @@ class GCNet(nn.Layer):
in_channels
=
gc_channels
,
out_channels
=
num_classes
,
kernel_size
=
1
)
if
enable_auxiliary_loss
:
self
.
auxlayer
=
layer_libs
.
AuxLayer
(
self
.
auxlayer
=
AuxLayer
(
in_channels
=
backbone_channels
[
0
],
inter_channels
=
backbone_channels
[
0
]
//
4
,
out_channels
=
num_classes
)
...
...
@@ -95,12 +139,11 @@ class GCNet(nn.Layer):
self
.
backbone_indices
=
backbone_indices
self
.
enable_auxiliary_loss
=
enable_auxiliary_loss
self
.
init_weight
(
model_pretrained
)
self
.
init_weight
()
def
forward
(
self
,
input
,
label
=
None
):
def
forward
(
self
,
feat_list
):
logit_list
=
[]
_
,
feat_list
=
self
.
backbone
(
input
)
x
=
feat_list
[
self
.
backbone_indices
[
1
]]
output
=
self
.
conv_bn_relu1
(
x
)
...
...
@@ -112,14 +155,11 @@ class GCNet(nn.Layer):
output
=
F
.
dropout
(
output
,
p
=
0.1
)
# dropout_prob
logit
=
self
.
conv
(
output
)
logit
=
F
.
resize_bilinear
(
logit
,
input
.
shape
[
2
:])
logit_list
.
append
(
logit
)
if
self
.
enable_auxiliary_loss
:
low_level_feat
=
feat_list
[
self
.
backbone_indices
[
0
]]
auxiliary_logit
=
self
.
auxlayer
(
low_level_feat
)
auxiliary_logit
=
F
.
resize_bilinear
(
auxiliary_logit
,
input
.
shape
[
2
:])
logit_list
.
append
(
auxiliary_logit
)
return
logit_list
...
...
@@ -127,15 +167,8 @@ class GCNet(nn.Layer):
def
init_weight
(
self
,
pretrained_model
=
None
):
"""
Initialize the parameters of model parts.
Args:
pretrained_model ([str], optional): the path of pretrained model. Defaults to None.
"""
if
pretrained_model
is
not
None
:
if
os
.
path
.
exists
(
pretrained_model
):
utils
.
load_pretrained_model
(
self
,
pretrained_model
)
else
:
raise
Exception
(
'Pretrained model is not found: {}'
.
format
(
pretrained_model
))
pass
class
GlobalContextBlock
(
nn
.
Layer
):
...
...
dygraph/paddleseg/models/pspnet.py
浏览文件 @
f7e5320e
...
...
@@ -17,7 +17,8 @@ import os
import
paddle.nn.functional
as
F
from
paddle
import
nn
from
paddleseg.cvlibs
import
manager
from
paddleseg.models.common
import
layer_libs
,
pyramid_pool
from
paddleseg.models.common
import
pyramid_pool
from
paddleseg.models.common.layer_libs
import
ConvBNReLU
,
AuxLayer
from
paddleseg.utils
import
utils
...
...
@@ -36,30 +37,75 @@ class PSPNet(nn.Layer):
backbone (Paddle.nn.Layer): backbone network, currently support Resnet50/101.
model_pretrained (str): the path of pretrained model. Default to None.
backbone_indices (tuple): two values in the tuple indicate the indices of output of backbone.
the first index will be taken as a deep-supervision feature in auxiliary layer;
the second one will be taken as input of Pyramid Pooling Module (PPModule).
Usually backbone consists of four downsampling stage, and return an output of
each stage, so we set default (2, 3), which means taking feature map of the third
stage (res4b22) in backbone, and feature map of the fourth stage (res5c) as input of PPModule.
backbone_channels (tuple): the same length with "backbone_indices". It indicates the channels of corresponding index.
pp_out_channels (int): output channels after Pyramid Pooling Module. Default to 1024.
bin_sizes (tuple): the out size of pooled feature maps. Default to (1,2,3,6).
enable_auxiliary_loss (bool): a bool values indicates whether adding auxiliary loss. Default to True.
pretrained (str): the path of pretrained model. Default to None.
"""
def
__init__
(
self
,
num_classes
,
backbone
,
model_pretrained
=
None
,
backbone_indices
=
(
2
,
3
),
backbone_channels
=
(
1024
,
2048
),
pp_out_channels
=
1024
,
bin_sizes
=
(
1
,
2
,
3
,
6
),
enable_auxiliary_loss
=
True
):
enable_auxiliary_loss
=
True
,
pretrained
=
None
):
super
(
PSPNet
,
self
).
__init__
()
self
.
backbone
=
backbone
backbone_channels
=
[
backbone
.
feat_channels
[
i
]
for
i
in
backbone_indices
]
self
.
head
=
PSPNetHead
(
num_classes
,
backbone_indices
,
backbone_channels
,
pp_out_channels
,
bin_sizes
,
enable_auxiliary_loss
)
utils
.
load_entire_model
(
self
,
pretrained
)
def
forward
(
self
,
input
):
feat_list
=
self
.
backbone
(
input
)
logit_list
=
self
.
head
(
feat_list
)
return
[
F
.
resize_bilinear
(
logit
,
input
.
shape
[
2
:])
for
logit
in
logit_list
]
class
PSPNetHead
(
nn
.
Layer
):
"""
The PSPNetHead implementation.
Args:
num_classes (int): the unique number of target classes.
backbone_indices (tuple): two values in the tuple indicate the indices of output of backbone.
the first index will be taken as a deep-supervision feature in auxiliary layer;
the second one will be taken as input of Pyramid Pooling Module (PPModule).
Usually backbone consists of four downsampling stage, and return an output of
each stage, so we set default (2, 3), which means taking feature map of the third
stage (res4b22) in backbone, and feature map of the fourth stage (res5c) as input of PPModule.
backbone_channels (tuple): the same length with "backbone_indices". It indicates the channels of corresponding index.
pp_out_channels (int): output channels after Pyramid Pooling Module. Default to 1024.
bin_sizes (tuple): the out size of pooled feature maps. Default to (1,2,3,6).
enable_auxiliary_loss (bool): a bool values indicates whether adding auxiliary loss. Default to True.
"""
def
__init__
(
self
,
num_classes
,
backbone_indices
=
(
2
,
3
),
backbone_channels
=
(
1024
,
2048
),
pp_out_channels
=
1024
,
bin_sizes
=
(
1
,
2
,
3
,
6
),
enable_auxiliary_loss
=
True
):
super
(
PSPNetHead
,
self
).
__init__
()
self
.
backbone_indices
=
backbone_indices
self
.
psp_module
=
pyramid_pool
.
PPModule
(
...
...
@@ -73,33 +119,29 @@ class PSPNet(nn.Layer):
kernel_size
=
1
)
if
enable_auxiliary_loss
:
self
.
auxlayer
=
layer_libs
.
AuxLayer
(
in_channels
=
backbone_channels
[
0
],
self
.
auxlayer
=
AuxLayer
(
in_channels
=
backbone_channels
[
0
],
inter_channels
=
backbone_channels
[
0
]
//
4
,
out_channels
=
num_classes
)
self
.
enable_auxiliary_loss
=
enable_auxiliary_loss
self
.
init_weight
(
model_pretrained
)
self
.
init_weight
()
def
forward
(
self
,
input
,
label
=
None
):
def
forward
(
self
,
feat_list
):
logit_list
=
[]
_
,
feat_list
=
self
.
backbone
(
input
)
x
=
feat_list
[
self
.
backbone_indices
[
1
]]
x
=
self
.
psp_module
(
x
)
x
=
F
.
dropout
(
x
,
p
=
0.1
)
# dropout_prob
logit
=
self
.
conv
(
x
)
logit
=
F
.
resize_bilinear
(
logit
,
input
.
shape
[
2
:])
logit_list
.
append
(
logit
)
if
self
.
enable_auxiliary_loss
:
auxiliary_feat
=
feat_list
[
self
.
backbone_indices
[
0
]]
auxiliary_logit
=
self
.
auxlayer
(
auxiliary_feat
)
auxiliary_logit
=
F
.
resize_bilinear
(
auxiliary_logit
,
input
.
shape
[
2
:])
logit_list
.
append
(
auxiliary_logit
)
return
logit_list
...
...
@@ -107,13 +149,6 @@ class PSPNet(nn.Layer):
def
init_weight
(
self
,
pretrained_model
=
None
):
"""
Initialize the parameters of model parts.
Args:
pretrained_model ([str], optional): the path of pretrained model. Defaults to None.
"""
if
pretrained_model
is
not
None
:
if
os
.
path
.
exists
(
pretrained_model
):
utils
.
load_pretrained_model
(
self
,
pretrained_model
)
else
:
raise
Exception
(
'Pretrained model is not found: {}'
.
format
(
pretrained_model
))
pass
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录