Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleSeg
提交
e5336bb5
P
PaddleSeg
项目概览
PaddlePaddle
/
PaddleSeg
通知
286
Star
8
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
53
列表
看板
标记
里程碑
合并请求
3
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleSeg
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
53
Issue
53
列表
看板
标记
里程碑
合并请求
3
合并请求
3
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
e5336bb5
编写于
8月 21, 2020
作者:
W
wuzewu
提交者:
GitHub
8月 21, 2020
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #351 from michaelowenliu/develop
上级
ec54aeff
7fd281e5
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
558 addition
and
98 deletion
+558
-98
dygraph/__init__.py
dygraph/__init__.py
+15
-0
dygraph/models/__init__.py
dygraph/models/__init__.py
+32
-29
dygraph/models/architectures/mobilenetv3.py
dygraph/models/architectures/mobilenetv3.py
+421
-0
dygraph/models/architectures/resnet_vd.py
dygraph/models/architectures/resnet_vd.py
+12
-4
dygraph/models/architectures/xception_deeplab.py
dygraph/models/architectures/xception_deeplab.py
+3
-1
dygraph/models/deeplab.py
dygraph/models/deeplab.py
+70
-57
dygraph/train.py
dygraph/train.py
+5
-7
未找到文件。
dygraph/__init__.py
0 → 100644
浏览文件 @
e5336bb5
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
dygraph.models
\ No newline at end of file
dygraph/models/__init__.py
浏览文件 @
e5336bb5
...
@@ -12,36 +12,39 @@
...
@@ -12,36 +12,39 @@
# See the License for the specific language governing permissions and
# See the License for the specific language governing permissions and
# limitations under the License.
# limitations under the License.
from
.architectures
import
*
from
.unet
import
UNet
from
.unet
import
UNet
from
.hrnet
import
*
from
.hrnet
import
*
from
.deeplab
import
*
from
.deeplab
import
*
MODELS
=
{
# MODELS = {
"UNet"
:
UNet
,
# "UNet": UNet,
"HRNet_W18_Small_V1"
:
HRNet_W18_Small_V1
,
# "HRNet_W18_Small_V1": HRNet_W18_Small_V1,
"HRNet_W18_Small_V2"
:
HRNet_W18_Small_V2
,
# "HRNet_W18_Small_V2": HRNet_W18_Small_V2,
"HRNet_W18"
:
HRNet_W18
,
# "HRNet_W18": HRNet_W18,
"HRNet_W30"
:
HRNet_W30
,
# "HRNet_W30": HRNet_W30,
"HRNet_W32"
:
HRNet_W32
,
# "HRNet_W32": HRNet_W32,
"HRNet_W40"
:
HRNet_W40
,
# "HRNet_W40": HRNet_W40,
"HRNet_W44"
:
HRNet_W44
,
# "HRNet_W44": HRNet_W44,
"HRNet_W48"
:
HRNet_W48
,
# "HRNet_W48": HRNet_W48,
"HRNet_W60"
:
HRNet_W48
,
# "HRNet_W60": HRNet_W48,
"HRNet_W64"
:
HRNet_W64
,
# "HRNet_W64": HRNet_W64,
"SE_HRNet_W18_Small_V1"
:
SE_HRNet_W18_Small_V1
,
# "SE_HRNet_W18_Small_V1": SE_HRNet_W18_Small_V1,
"SE_HRNet_W18_Small_V2"
:
SE_HRNet_W18_Small_V2
,
# "SE_HRNet_W18_Small_V2": SE_HRNet_W18_Small_V2,
"SE_HRNet_W18"
:
SE_HRNet_W18
,
# "SE_HRNet_W18": SE_HRNet_W18,
"SE_HRNet_W30"
:
SE_HRNet_W30
,
# "SE_HRNet_W30": SE_HRNet_W30,
"SE_HRNet_W32"
:
SE_HRNet_W30
,
# "SE_HRNet_W32": SE_HRNet_W30,
"SE_HRNet_W40"
:
SE_HRNet_W40
,
# "SE_HRNet_W40": SE_HRNet_W40,
"SE_HRNet_W44"
:
SE_HRNet_W44
,
# "SE_HRNet_W44": SE_HRNet_W44,
"SE_HRNet_W48"
:
SE_HRNet_W48
,
# "SE_HRNet_W48": SE_HRNet_W48,
"SE_HRNet_W60"
:
SE_HRNet_W60
,
# "SE_HRNet_W60": SE_HRNet_W60,
"SE_HRNet_W64"
:
SE_HRNet_W64
,
# "SE_HRNet_W64": SE_HRNet_W64,
"DeepLabV3P"
:
DeepLabV3P
,
# "DeepLabV3P": DeepLabV3P,
"deeplabv3p_resnet101_vd"
:
deeplabv3p_resnet101_vd
,
# "deeplabv3p_resnet101_vd": deeplabv3p_resnet101_vd,
"deeplabv3p_resnet101_vd_os8"
:
deeplabv3p_resnet101_vd_os8
,
# "deeplabv3p_resnet101_vd_os8": deeplabv3p_resnet101_vd_os8,
"deeplabv3p_resnet50_vd"
:
deeplabv3p_resnet50_vd
,
# "deeplabv3p_resnet50_vd": deeplabv3p_resnet50_vd,
"deeplabv3p_resnet50_vd_os8"
:
deeplabv3p_resnet50_vd_os8
,
# "deeplabv3p_resnet50_vd_os8": deeplabv3p_resnet50_vd_os8,
"deeplabv3p_xception65_deeplab"
:
deeplabv3p_xception65_deeplab
# "deeplabv3p_xception65_deeplab": deeplabv3p_xception65_deeplab,
}
# "deeplabv3p_mobilenetv3_large": deeplabv3p_mobilenetv3_large,
# "deeplabv3p_mobilenetv3_small": deeplabv3p_mobilenetv3_small
# }
dygraph/models/architectures/mobilenetv3.py
0 → 100644
浏览文件 @
e5336bb5
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
Linear
,
Dropout
import
math
from
dygraph.cvlibs
import
manager
__all__
=
[
"MobileNetV3_small_x0_35"
,
"MobileNetV3_small_x0_5"
,
"MobileNetV3_small_x0_75"
,
"MobileNetV3_small_x1_0"
,
"MobileNetV3_small_x1_25"
,
"MobileNetV3_large_x0_35"
,
"MobileNetV3_large_x0_5"
,
"MobileNetV3_large_x0_75"
,
"MobileNetV3_large_x1_0"
,
"MobileNetV3_large_x1_25"
]
def
make_divisible
(
v
,
divisor
=
8
,
min_value
=
None
):
if
min_value
is
None
:
min_value
=
divisor
new_v
=
max
(
min_value
,
int
(
v
+
divisor
/
2
)
//
divisor
*
divisor
)
if
new_v
<
0.9
*
v
:
new_v
+=
divisor
return
new_v
def
get_padding_same
(
kernel_size
,
dilation_rate
):
"""
SAME padding implementation given kernel_size and dilation_rate.
The calculation formula as following:
(F-(k+(k -1)*(r-1))+2*p)/s + 1 = F_new
where F: a feature map
k: kernel size, r: dilation rate, p: padding value, s: stride
F_new: new feature map
Args:
kernel_size (int)
dilation_rate (int)
Returns:
padding_same (int): padding value
"""
k
=
kernel_size
r
=
dilation_rate
padding_same
=
(
k
+
(
k
-
1
)
*
(
r
-
1
)
-
1
)
//
2
return
padding_same
class
MobileNetV3
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
scale
=
1.0
,
model_name
=
"small"
,
class_dim
=
1000
,
output_stride
=
None
,
**
kwargs
):
super
(
MobileNetV3
,
self
).
__init__
()
inplanes
=
16
if
model_name
==
"large"
:
self
.
cfg
=
[
# k, exp, c, se, nl, s,
[
3
,
16
,
16
,
False
,
"relu"
,
1
],
[
3
,
64
,
24
,
False
,
"relu"
,
2
],
[
3
,
72
,
24
,
False
,
"relu"
,
1
],
# output 1 -> out_index=2
[
5
,
72
,
40
,
True
,
"relu"
,
2
],
[
5
,
120
,
40
,
True
,
"relu"
,
1
],
[
5
,
120
,
40
,
True
,
"relu"
,
1
],
# output 2 -> out_index=5
[
3
,
240
,
80
,
False
,
"hard_swish"
,
2
],
[
3
,
200
,
80
,
False
,
"hard_swish"
,
1
],
[
3
,
184
,
80
,
False
,
"hard_swish"
,
1
],
[
3
,
184
,
80
,
False
,
"hard_swish"
,
1
],
[
3
,
480
,
112
,
True
,
"hard_swish"
,
1
],
[
3
,
672
,
112
,
True
,
"hard_swish"
,
1
],
# output 3 -> out_index=11
[
5
,
672
,
160
,
True
,
"hard_swish"
,
2
],
[
5
,
960
,
160
,
True
,
"hard_swish"
,
1
],
[
5
,
960
,
160
,
True
,
"hard_swish"
,
1
],
# output 3 -> out_index=14
]
self
.
out_indices
=
[
2
,
5
,
11
,
14
]
self
.
cls_ch_squeeze
=
960
self
.
cls_ch_expand
=
1280
elif
model_name
==
"small"
:
self
.
cfg
=
[
# k, exp, c, se, nl, s,
[
3
,
16
,
16
,
True
,
"relu"
,
2
],
# output 1 -> out_index=0
[
3
,
72
,
24
,
False
,
"relu"
,
2
],
[
3
,
88
,
24
,
False
,
"relu"
,
1
],
# output 2 -> out_index=3
[
5
,
96
,
40
,
True
,
"hard_swish"
,
2
],
[
5
,
240
,
40
,
True
,
"hard_swish"
,
1
],
[
5
,
240
,
40
,
True
,
"hard_swish"
,
1
],
[
5
,
120
,
48
,
True
,
"hard_swish"
,
1
],
[
5
,
144
,
48
,
True
,
"hard_swish"
,
1
],
# output 3 -> out_index=7
[
5
,
288
,
96
,
True
,
"hard_swish"
,
2
],
[
5
,
576
,
96
,
True
,
"hard_swish"
,
1
],
[
5
,
576
,
96
,
True
,
"hard_swish"
,
1
],
# output 4 -> out_index=10
]
self
.
out_indices
=
[
0
,
3
,
7
,
10
]
self
.
cls_ch_squeeze
=
576
self
.
cls_ch_expand
=
1280
else
:
raise
NotImplementedError
(
"mode[{}_model] is not implemented!"
.
format
(
model_name
))
###################################################
# modify stride and dilation based on output_stride
self
.
dilation_cfg
=
[
1
]
*
len
(
self
.
cfg
)
self
.
modify_bottle_params
(
output_stride
=
output_stride
)
###################################################
self
.
conv1
=
ConvBNLayer
(
in_c
=
3
,
out_c
=
make_divisible
(
inplanes
*
scale
),
filter_size
=
3
,
stride
=
2
,
padding
=
1
,
num_groups
=
1
,
if_act
=
True
,
act
=
"hard_swish"
,
name
=
"conv1"
)
self
.
block_list
=
[]
inplanes
=
make_divisible
(
inplanes
*
scale
)
for
i
,
(
k
,
exp
,
c
,
se
,
nl
,
s
)
in
enumerate
(
self
.
cfg
):
######################################
# add dilation rate
dilation_rate
=
self
.
dilation_cfg
[
i
]
######################################
self
.
block_list
.
append
(
ResidualUnit
(
in_c
=
inplanes
,
mid_c
=
make_divisible
(
scale
*
exp
),
out_c
=
make_divisible
(
scale
*
c
),
filter_size
=
k
,
stride
=
s
,
dilation
=
dilation_rate
,
use_se
=
se
,
act
=
nl
,
name
=
"conv"
+
str
(
i
+
2
)))
self
.
add_sublayer
(
sublayer
=
self
.
block_list
[
-
1
],
name
=
"conv"
+
str
(
i
+
2
))
inplanes
=
make_divisible
(
scale
*
c
)
self
.
last_second_conv
=
ConvBNLayer
(
in_c
=
inplanes
,
out_c
=
make_divisible
(
scale
*
self
.
cls_ch_squeeze
),
filter_size
=
1
,
stride
=
1
,
padding
=
0
,
num_groups
=
1
,
if_act
=
True
,
act
=
"hard_swish"
,
name
=
"conv_last"
)
self
.
pool
=
Pool2D
(
pool_type
=
"avg"
,
global_pooling
=
True
,
use_cudnn
=
False
)
self
.
last_conv
=
Conv2D
(
num_channels
=
make_divisible
(
scale
*
self
.
cls_ch_squeeze
),
num_filters
=
self
.
cls_ch_expand
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
,
act
=
None
,
param_attr
=
ParamAttr
(
name
=
"last_1x1_conv_weights"
),
bias_attr
=
False
)
self
.
out
=
Linear
(
input_dim
=
self
.
cls_ch_expand
,
output_dim
=
class_dim
,
param_attr
=
ParamAttr
(
"fc_weights"
),
bias_attr
=
ParamAttr
(
name
=
"fc_offset"
))
def
modify_bottle_params
(
self
,
output_stride
=
None
):
if
output_stride
is
not
None
and
output_stride
%
2
!=
0
:
raise
Exception
(
"output stride must to be even number"
)
if
output_stride
is
not
None
:
stride
=
2
rate
=
1
for
i
,
_cfg
in
enumerate
(
self
.
cfg
):
stride
=
stride
*
_cfg
[
-
1
]
if
stride
>
output_stride
:
rate
=
rate
*
_cfg
[
-
1
]
self
.
cfg
[
i
][
-
1
]
=
1
self
.
dilation_cfg
[
i
]
=
rate
def
forward
(
self
,
inputs
,
label
=
None
,
dropout_prob
=
0.2
):
x
=
self
.
conv1
(
inputs
)
# A feature list saves each downsampling feature.
feat_list
=
[]
for
i
,
block
in
enumerate
(
self
.
block_list
):
x
=
block
(
x
)
if
i
in
self
.
out_indices
:
feat_list
.
append
(
x
)
#print("block {}:".format(i),x.shape, self.dilation_cfg[i])
x
=
self
.
last_second_conv
(
x
)
x
=
self
.
pool
(
x
)
x
=
self
.
last_conv
(
x
)
x
=
fluid
.
layers
.
hard_swish
(
x
)
x
=
fluid
.
layers
.
dropout
(
x
=
x
,
dropout_prob
=
dropout_prob
)
x
=
fluid
.
layers
.
reshape
(
x
,
shape
=
[
x
.
shape
[
0
],
x
.
shape
[
1
]])
x
=
self
.
out
(
x
)
return
x
,
feat_list
class
ConvBNLayer
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
in_c
,
out_c
,
filter_size
,
stride
,
padding
,
dilation
=
1
,
num_groups
=
1
,
if_act
=
True
,
act
=
None
,
use_cudnn
=
True
,
name
=
""
):
super
(
ConvBNLayer
,
self
).
__init__
()
self
.
if_act
=
if_act
self
.
act
=
act
self
.
conv
=
fluid
.
dygraph
.
Conv2D
(
num_channels
=
in_c
,
num_filters
=
out_c
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
padding
,
dilation
=
dilation
,
groups
=
num_groups
,
param_attr
=
ParamAttr
(
name
=
name
+
"_weights"
),
bias_attr
=
False
,
use_cudnn
=
use_cudnn
,
act
=
None
)
self
.
bn
=
fluid
.
dygraph
.
BatchNorm
(
num_channels
=
out_c
,
act
=
None
,
param_attr
=
ParamAttr
(
name
=
name
+
"_bn_scale"
,
regularizer
=
fluid
.
regularizer
.
L2DecayRegularizer
(
regularization_coeff
=
0.0
)),
bias_attr
=
ParamAttr
(
name
=
name
+
"_bn_offset"
,
regularizer
=
fluid
.
regularizer
.
L2DecayRegularizer
(
regularization_coeff
=
0.0
)),
moving_mean_name
=
name
+
"_bn_mean"
,
moving_variance_name
=
name
+
"_bn_variance"
)
def
forward
(
self
,
x
):
x
=
self
.
conv
(
x
)
x
=
self
.
bn
(
x
)
if
self
.
if_act
:
if
self
.
act
==
"relu"
:
x
=
fluid
.
layers
.
relu
(
x
)
elif
self
.
act
==
"hard_swish"
:
x
=
fluid
.
layers
.
hard_swish
(
x
)
else
:
print
(
"The activation function is selected incorrectly."
)
exit
()
return
x
class
ResidualUnit
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
in_c
,
mid_c
,
out_c
,
filter_size
,
stride
,
use_se
,
dilation
=
1
,
act
=
None
,
name
=
''
):
super
(
ResidualUnit
,
self
).
__init__
()
self
.
if_shortcut
=
stride
==
1
and
in_c
==
out_c
self
.
if_se
=
use_se
self
.
expand_conv
=
ConvBNLayer
(
in_c
=
in_c
,
out_c
=
mid_c
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
,
if_act
=
True
,
act
=
act
,
name
=
name
+
"_expand"
)
self
.
bottleneck_conv
=
ConvBNLayer
(
in_c
=
mid_c
,
out_c
=
mid_c
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
get_padding_same
(
filter_size
,
dilation
),
#int((filter_size - 1) // 2) + (dilation - 1),
dilation
=
dilation
,
num_groups
=
mid_c
,
if_act
=
True
,
act
=
act
,
name
=
name
+
"_depthwise"
)
if
self
.
if_se
:
self
.
mid_se
=
SEModule
(
mid_c
,
name
=
name
+
"_se"
)
self
.
linear_conv
=
ConvBNLayer
(
in_c
=
mid_c
,
out_c
=
out_c
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
,
if_act
=
False
,
act
=
None
,
name
=
name
+
"_linear"
)
self
.
dilation
=
dilation
def
forward
(
self
,
inputs
):
x
=
self
.
expand_conv
(
inputs
)
x
=
self
.
bottleneck_conv
(
x
)
if
self
.
if_se
:
x
=
self
.
mid_se
(
x
)
x
=
self
.
linear_conv
(
x
)
if
self
.
if_shortcut
:
x
=
fluid
.
layers
.
elementwise_add
(
inputs
,
x
)
return
x
class
SEModule
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
channel
,
reduction
=
4
,
name
=
""
):
super
(
SEModule
,
self
).
__init__
()
self
.
avg_pool
=
fluid
.
dygraph
.
Pool2D
(
pool_type
=
"avg"
,
global_pooling
=
True
,
use_cudnn
=
False
)
self
.
conv1
=
fluid
.
dygraph
.
Conv2D
(
num_channels
=
channel
,
num_filters
=
channel
//
reduction
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
,
act
=
"relu"
,
param_attr
=
ParamAttr
(
name
=
name
+
"_1_weights"
),
bias_attr
=
ParamAttr
(
name
=
name
+
"_1_offset"
))
self
.
conv2
=
fluid
.
dygraph
.
Conv2D
(
num_channels
=
channel
//
reduction
,
num_filters
=
channel
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
,
act
=
None
,
param_attr
=
ParamAttr
(
name
+
"_2_weights"
),
bias_attr
=
ParamAttr
(
name
=
name
+
"_2_offset"
))
def
forward
(
self
,
inputs
):
outputs
=
self
.
avg_pool
(
inputs
)
outputs
=
self
.
conv1
(
outputs
)
outputs
=
self
.
conv2
(
outputs
)
outputs
=
fluid
.
layers
.
hard_sigmoid
(
outputs
)
return
fluid
.
layers
.
elementwise_mul
(
x
=
inputs
,
y
=
outputs
,
axis
=
0
)
def
MobileNetV3_small_x0_35
(
**
kwargs
):
model
=
MobileNetV3
(
model_name
=
"small"
,
scale
=
0.35
,
**
kwargs
)
return
model
def
MobileNetV3_small_x0_5
(
**
kwargs
):
model
=
MobileNetV3
(
model_name
=
"small"
,
scale
=
0.5
,
**
kwargs
)
return
model
def
MobileNetV3_small_x0_75
(
**
kwargs
):
model
=
MobileNetV3
(
model_name
=
"small"
,
scale
=
0.75
,
**
kwargs
)
return
model
@
manager
.
BACKBONES
.
add_component
def
MobileNetV3_small_x1_0
(
**
kwargs
):
model
=
MobileNetV3
(
model_name
=
"small"
,
scale
=
1.0
,
**
kwargs
)
return
model
def
MobileNetV3_small_x1_25
(
**
kwargs
):
model
=
MobileNetV3
(
model_name
=
"small"
,
scale
=
1.25
,
**
kwargs
)
return
model
def
MobileNetV3_large_x0_35
(
**
kwargs
):
model
=
MobileNetV3
(
model_name
=
"large"
,
scale
=
0.35
,
**
kwargs
)
return
model
def
MobileNetV3_large_x0_5
(
**
kwargs
):
model
=
MobileNetV3
(
model_name
=
"large"
,
scale
=
0.5
,
**
kwargs
)
return
model
def
MobileNetV3_large_x0_75
(
**
kwargs
):
model
=
MobileNetV3
(
model_name
=
"large"
,
scale
=
0.75
,
**
kwargs
)
return
model
@
manager
.
BACKBONES
.
add_component
def
MobileNetV3_large_x1_0
(
**
kwargs
):
model
=
MobileNetV3
(
model_name
=
"large"
,
scale
=
1.0
,
**
kwargs
)
return
model
def
MobileNetV3_large_x1_25
(
**
kwargs
):
model
=
MobileNetV3
(
model_name
=
"large"
,
scale
=
1.25
,
**
kwargs
)
return
model
dygraph/models/architectures/resnet_vd.py
浏览文件 @
e5336bb5
...
@@ -28,6 +28,8 @@ from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout
...
@@ -28,6 +28,8 @@ from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout
from
dygraph.utils
import
utils
from
dygraph.utils
import
utils
from
dygraph.cvlibs
import
manager
__all__
=
[
__all__
=
[
"ResNet18_vd"
,
"ResNet34_vd"
,
"ResNet50_vd"
,
"ResNet101_vd"
,
"ResNet152_vd"
"ResNet18_vd"
,
"ResNet34_vd"
,
"ResNet50_vd"
,
"ResNet101_vd"
,
"ResNet152_vd"
]
]
...
@@ -199,9 +201,9 @@ class BasicBlock(fluid.dygraph.Layer):
...
@@ -199,9 +201,9 @@ class BasicBlock(fluid.dygraph.Layer):
class
ResNet_vd
(
fluid
.
dygraph
.
Layer
):
class
ResNet_vd
(
fluid
.
dygraph
.
Layer
):
def
__init__
(
self
,
layers
=
50
,
class_dim
=
1000
,
dilation_dict
=
None
,
multi_grid
=
(
1
,
2
,
4
),
**
kwargs
):
def
__init__
(
self
,
layers
=
50
,
class_dim
=
1000
,
output_stride
=
None
,
multi_grid
=
(
1
,
2
,
4
),
**
kwargs
):
super
(
ResNet_vd
,
self
).
__init__
()
super
(
ResNet_vd
,
self
).
__init__
()
self
.
layers
=
layers
self
.
layers
=
layers
supported_layers
=
[
18
,
34
,
50
,
101
,
152
,
200
]
supported_layers
=
[
18
,
34
,
50
,
101
,
152
,
200
]
assert
layers
in
supported_layers
,
\
assert
layers
in
supported_layers
,
\
...
@@ -222,6 +224,12 @@ class ResNet_vd(fluid.dygraph.Layer):
...
@@ -222,6 +224,12 @@ class ResNet_vd(fluid.dygraph.Layer):
1024
]
if
layers
>=
50
else
[
64
,
64
,
128
,
256
]
1024
]
if
layers
>=
50
else
[
64
,
64
,
128
,
256
]
num_filters
=
[
64
,
128
,
256
,
512
]
num_filters
=
[
64
,
128
,
256
,
512
]
dilation_dict
=
None
if
output_stride
==
8
:
dilation_dict
=
{
2
:
2
,
3
:
4
}
elif
output_stride
==
16
:
dilation_dict
=
{
3
:
2
}
self
.
conv1_1
=
ConvBNLayer
(
self
.
conv1_1
=
ConvBNLayer
(
num_channels
=
3
,
num_channels
=
3
,
num_filters
=
32
,
num_filters
=
32
,
...
@@ -359,12 +367,12 @@ def ResNet34_vd(**args):
...
@@ -359,12 +367,12 @@ def ResNet34_vd(**args):
model
=
ResNet_vd
(
layers
=
34
,
**
args
)
model
=
ResNet_vd
(
layers
=
34
,
**
args
)
return
model
return
model
@
manager
.
BACKBONES
.
add_component
def
ResNet50_vd
(
**
args
):
def
ResNet50_vd
(
**
args
):
model
=
ResNet_vd
(
layers
=
50
,
**
args
)
model
=
ResNet_vd
(
layers
=
50
,
**
args
)
return
model
return
model
@
manager
.
BACKBONES
.
add_component
def
ResNet101_vd
(
**
args
):
def
ResNet101_vd
(
**
args
):
model
=
ResNet_vd
(
layers
=
101
,
**
args
)
model
=
ResNet_vd
(
layers
=
101
,
**
args
)
return
model
return
model
...
...
dygraph/models/architectures/xception_deeplab.py
浏览文件 @
e5336bb5
...
@@ -4,6 +4,8 @@ from paddle.fluid.param_attr import ParamAttr
...
@@ -4,6 +4,8 @@ from paddle.fluid.param_attr import ParamAttr
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
Linear
,
Dropout
from
paddle.fluid.dygraph.nn
import
Conv2D
,
Pool2D
,
BatchNorm
,
Linear
,
Dropout
from
dygraph.cvlibs
import
manager
__all__
=
[
"Xception41_deeplab"
,
"Xception65_deeplab"
,
"Xception71_deeplab"
]
__all__
=
[
"Xception41_deeplab"
,
"Xception65_deeplab"
,
"Xception71_deeplab"
]
...
@@ -400,7 +402,7 @@ def Xception41_deeplab(**args):
...
@@ -400,7 +402,7 @@ def Xception41_deeplab(**args):
model
=
XceptionDeeplab
(
'xception_41'
,
**
args
)
model
=
XceptionDeeplab
(
'xception_41'
,
**
args
)
return
model
return
model
@
manager
.
BACKBONES
.
add_component
def
Xception65_deeplab
(
**
args
):
def
Xception65_deeplab
(
**
args
):
model
=
XceptionDeeplab
(
"xception_65"
,
**
args
)
model
=
XceptionDeeplab
(
"xception_65"
,
**
args
)
return
model
return
model
...
...
dygraph/models/deeplab.py
浏览文件 @
e5336bb5
...
@@ -13,22 +13,21 @@
...
@@ -13,22 +13,21 @@
# limitations under the License.
# limitations under the License.
import
os
import
os
import
numpy
as
np
from
dygraph.cvlibs
import
manager
from
dygraph.models.architectures
import
layer_utils
import
paddle
from
paddle
import
fluid
from
paddle
import
fluid
from
paddle.fluid
import
dygraph
from
paddle.fluid
import
dygraph
from
paddle.fluid.dygraph
import
Conv2D
from
paddle.fluid.dygraph
import
Conv2D
from
.architectures
import
layer_utils
,
xception_deeplab
,
resnet_vd
from
dygraph.utils
import
utils
from
dygraph.utils
import
utils
__all__
=
[
'DeepLabV3P'
,
"deeplabv3p_resnet101_vd"
,
"deeplabv3p_resnet101_vd_os8"
,
__all__
=
[
'DeepLabV3P'
,
"deeplabv3p_resnet101_vd"
,
"deeplabv3p_resnet101_vd_os8"
,
"deeplabv3p_resnet50_vd"
,
"deeplabv3p_resnet50_vd_os8"
,
"deeplabv3p_resnet50_vd"
,
"deeplabv3p_resnet50_vd_os8"
,
"deeplabv3p_xception65_deeplab"
]
"deeplabv3p_xception65_deeplab"
,
"deeplabv3p_mobilenetv3_large"
,
"deeplabv3p_mobilenetv3_small"
]
class
ImageAverage
(
dygraph
.
Layer
):
class
ImageAverage
(
dygraph
.
Layer
):
"""
"""
...
@@ -42,8 +41,8 @@ class ImageAverage(dygraph.Layer):
...
@@ -42,8 +41,8 @@ class ImageAverage(dygraph.Layer):
def
__init__
(
self
,
num_channels
):
def
__init__
(
self
,
num_channels
):
super
(
ImageAverage
,
self
).
__init__
()
super
(
ImageAverage
,
self
).
__init__
()
self
.
conv_bn_relu
=
layer_utils
.
ConvBnRelu
(
num_channels
,
self
.
conv_bn_relu
=
layer_utils
.
ConvBnRelu
(
num_channels
,
num_filters
=
256
,
num_filters
=
256
,
filter_size
=
1
)
filter_size
=
1
)
def
forward
(
self
,
input
):
def
forward
(
self
,
input
):
x
=
fluid
.
layers
.
reduce_mean
(
input
,
dim
=
[
2
,
3
],
keep_dim
=
True
)
x
=
fluid
.
layers
.
reduce_mean
(
input
,
dim
=
[
2
,
3
],
keep_dim
=
True
)
...
@@ -78,8 +77,8 @@ class ASPP(dygraph.Layer):
...
@@ -78,8 +77,8 @@ class ASPP(dygraph.Layer):
self
.
aspp1
=
layer_utils
.
ConvBnRelu
(
num_channels
=
in_channels
,
self
.
aspp1
=
layer_utils
.
ConvBnRelu
(
num_channels
=
in_channels
,
num_filters
=
256
,
num_filters
=
256
,
filter_size
=
1
,
filter_size
=
1
,
using_sep_conv
=
False
)
using_sep_conv
=
False
)
# The second aspp using 3*3 (separable) conv at dilated rate aspp_ratios[0]
# The second aspp using 3*3 (separable) conv at dilated rate aspp_ratios[0]
self
.
aspp2
=
layer_utils
.
ConvBnRelu
(
num_channels
=
in_channels
,
self
.
aspp2
=
layer_utils
.
ConvBnRelu
(
num_channels
=
in_channels
,
num_filters
=
256
,
num_filters
=
256
,
...
@@ -87,7 +86,7 @@ class ASPP(dygraph.Layer):
...
@@ -87,7 +86,7 @@ class ASPP(dygraph.Layer):
using_sep_conv
=
using_sep_conv
,
using_sep_conv
=
using_sep_conv
,
dilation
=
aspp_ratios
[
0
],
dilation
=
aspp_ratios
[
0
],
padding
=
aspp_ratios
[
0
])
padding
=
aspp_ratios
[
0
])
# The Third aspp using 3*3 (separable) conv at dilated rate aspp_ratios[1]
# The Third aspp using 3*3 (separable) conv at dilated rate aspp_ratios[1]
self
.
aspp3
=
layer_utils
.
ConvBnRelu
(
num_channels
=
in_channels
,
self
.
aspp3
=
layer_utils
.
ConvBnRelu
(
num_channels
=
in_channels
,
num_filters
=
256
,
num_filters
=
256
,
...
@@ -103,22 +102,21 @@ class ASPP(dygraph.Layer):
...
@@ -103,22 +102,21 @@ class ASPP(dygraph.Layer):
using_sep_conv
=
using_sep_conv
,
using_sep_conv
=
using_sep_conv
,
dilation
=
aspp_ratios
[
2
],
dilation
=
aspp_ratios
[
2
],
padding
=
aspp_ratios
[
2
])
padding
=
aspp_ratios
[
2
])
# After concat op, using 1*1 conv
# After concat op, using 1*1 conv
self
.
conv_bn_relu
=
layer_utils
.
ConvBnRelu
(
num_channels
=
1280
,
self
.
conv_bn_relu
=
layer_utils
.
ConvBnRelu
(
num_channels
=
1280
,
num_filters
=
256
,
num_filters
=
256
,
filter_size
=
1
)
filter_size
=
1
)
def
forward
(
self
,
x
):
def
forward
(
self
,
x
):
x1
=
self
.
image_average
(
x
)
x1
=
self
.
image_average
(
x
)
x2
=
self
.
aspp1
(
x
)
x2
=
self
.
aspp1
(
x
)
x3
=
self
.
aspp2
(
x
)
x3
=
self
.
aspp2
(
x
)
x4
=
self
.
aspp3
(
x
)
x4
=
self
.
aspp3
(
x
)
x5
=
self
.
aspp4
(
x
)
x5
=
self
.
aspp4
(
x
)
x
=
fluid
.
layers
.
concat
([
x1
,
x2
,
x3
,
x4
,
x5
],
axis
=
1
)
x
=
fluid
.
layers
.
concat
([
x1
,
x2
,
x3
,
x4
,
x5
],
axis
=
1
)
x
=
self
.
conv_bn_relu
(
x
)
x
=
self
.
conv_bn_relu
(
x
)
x
=
fluid
.
layers
.
dropout
(
x
,
dropout_prob
=
0.1
)
x
=
fluid
.
layers
.
dropout
(
x
,
dropout_prob
=
0.1
)
return
x
return
x
...
@@ -137,11 +135,11 @@ class Decoder(dygraph.Layer):
...
@@ -137,11 +135,11 @@ class Decoder(dygraph.Layer):
def
__init__
(
self
,
num_classes
,
in_channels
,
using_sep_conv
=
True
):
def
__init__
(
self
,
num_classes
,
in_channels
,
using_sep_conv
=
True
):
super
(
Decoder
,
self
).
__init__
()
super
(
Decoder
,
self
).
__init__
()
self
.
conv_bn_relu1
=
layer_utils
.
ConvBnRelu
(
num_channels
=
in_channels
,
self
.
conv_bn_relu1
=
layer_utils
.
ConvBnRelu
(
num_channels
=
in_channels
,
num_filters
=
48
,
num_filters
=
48
,
filter_size
=
1
)
filter_size
=
1
)
self
.
conv_bn_relu2
=
layer_utils
.
ConvBnRelu
(
num_channels
=
304
,
self
.
conv_bn_relu2
=
layer_utils
.
ConvBnRelu
(
num_channels
=
304
,
num_filters
=
256
,
num_filters
=
256
,
filter_size
=
3
,
filter_size
=
3
,
...
@@ -152,8 +150,8 @@ class Decoder(dygraph.Layer):
...
@@ -152,8 +150,8 @@ class Decoder(dygraph.Layer):
filter_size
=
3
,
filter_size
=
3
,
using_sep_conv
=
using_sep_conv
,
using_sep_conv
=
using_sep_conv
,
padding
=
1
)
padding
=
1
)
self
.
conv
=
Conv2D
(
num_channels
=
256
,
self
.
conv
=
Conv2D
(
num_channels
=
256
,
num_filters
=
num_classes
,
num_filters
=
num_classes
,
filter_size
=
1
)
filter_size
=
1
)
def
forward
(
self
,
x
,
low_level_feat
):
def
forward
(
self
,
x
,
low_level_feat
):
...
@@ -169,7 +167,7 @@ class Decoder(dygraph.Layer):
...
@@ -169,7 +167,7 @@ class Decoder(dygraph.Layer):
class
DeepLabV3P
(
dygraph
.
Layer
):
class
DeepLabV3P
(
dygraph
.
Layer
):
"""
"""
The DeepLabV3P consists of three main components, Backbone, ASPP and Decoder
The DeepLabV3P consists of three main components, Backbone, ASPP and Decoder
The orginal artile refers to
The orginal artile refers to
"Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation"
"Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation"
Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, Hartwig Adam.
Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, Hartwig Adam.
(https://arxiv.org/abs/1802.02611)
(https://arxiv.org/abs/1802.02611)
...
@@ -183,7 +181,7 @@ class DeepLabV3P(dygraph.Layer):
...
@@ -183,7 +181,7 @@ class DeepLabV3P(dygraph.Layer):
backbone_indices (tuple): two values in the tuple indicte the indices of output of backbone.
backbone_indices (tuple): two values in the tuple indicte the indices of output of backbone.
the first index will be taken as a low-level feature in Deconder component;
the first index will be taken as a low-level feature in Deconder component;
the second one will be taken as input of ASPP component.
the second one will be taken as input of ASPP component.
Usually backbone consists of four downsampling stage, and return an output of
Usually backbone consists of four downsampling stage, and return an output of
each stage, so we set default (0, 3), which means taking feature map of the first
each stage, so we set default (0, 3), which means taking feature map of the first
stage in backbone as low-level feature used in Decoder, and feature map of the fourth
stage in backbone as low-level feature used in Decoder, and feature map of the fourth
...
@@ -193,15 +191,16 @@ class DeepLabV3P(dygraph.Layer):
...
@@ -193,15 +191,16 @@ class DeepLabV3P(dygraph.Layer):
ignore_index (int): the value of ground-truth mask would be ignored while doing evaluation. Default 255.
ignore_index (int): the value of ground-truth mask would be ignored while doing evaluation. Default 255.
using_sep_conv (bool): a bool value indicates whether using separable convolutions
using_sep_conv (bool): a bool value indicates whether using separable convolutions
in ASPP and Decoder components. Default True.
in ASPP and Decoder components. Default True.
pretrained_model (str): the pretrained_model path of backbone.
pretrained_model (str): the pretrained_model path of backbone.
"""
"""
def
__init__
(
self
,
backbone
,
def
__init__
(
self
,
num_classes
=
2
,
backbone
,
num_classes
=
2
,
output_stride
=
16
,
output_stride
=
16
,
backbone_indices
=
(
0
,
3
),
backbone_indices
=
(
0
,
3
),
backbone_channels
=
(
256
,
2048
),
backbone_channels
=
(
256
,
2048
),
ignore_index
=
255
,
ignore_index
=
255
,
using_sep_conv
=
True
,
using_sep_conv
=
True
,
...
@@ -209,7 +208,7 @@ class DeepLabV3P(dygraph.Layer):
...
@@ -209,7 +208,7 @@ class DeepLabV3P(dygraph.Layer):
super
(
DeepLabV3P
,
self
).
__init__
()
super
(
DeepLabV3P
,
self
).
__init__
()
self
.
backbone
=
build_backbone
(
backbone
,
output_stride
)
self
.
backbone
=
manager
.
BACKBONES
[
backbone
](
output_stride
=
output_stride
)
self
.
aspp
=
ASPP
(
output_stride
,
backbone_channels
[
1
],
using_sep_conv
)
self
.
aspp
=
ASPP
(
output_stride
,
backbone_channels
[
1
],
using_sep_conv
)
self
.
decoder
=
Decoder
(
num_classes
,
backbone_channels
[
0
],
using_sep_conv
)
self
.
decoder
=
Decoder
(
num_classes
,
backbone_channels
[
0
],
using_sep_conv
)
self
.
ignore_index
=
ignore_index
self
.
ignore_index
=
ignore_index
...
@@ -217,14 +216,15 @@ class DeepLabV3P(dygraph.Layer):
...
@@ -217,14 +216,15 @@ class DeepLabV3P(dygraph.Layer):
self
.
backbone_indices
=
backbone_indices
self
.
backbone_indices
=
backbone_indices
self
.
init_weight
(
pretrained_model
)
self
.
init_weight
(
pretrained_model
)
def
forward
(
self
,
input
,
label
=
None
,
mode
=
'train'
):
def
forward
(
self
,
input
,
label
=
None
):
_
,
feat_list
=
self
.
backbone
(
input
)
_
,
feat_list
=
self
.
backbone
(
input
)
low_level_feat
=
feat_list
[
self
.
backbone_indices
[
0
]]
low_level_feat
=
feat_list
[
self
.
backbone_indices
[
0
]]
x
=
feat_list
[
self
.
backbone_indices
[
1
]]
x
=
feat_list
[
self
.
backbone_indices
[
1
]]
x
=
self
.
aspp
(
x
)
x
=
self
.
aspp
(
x
)
logit
=
self
.
decoder
(
x
,
low_level_feat
)
logit
=
self
.
decoder
(
x
,
low_level_feat
)
logit
=
fluid
.
layers
.
resize_bilinear
(
logit
,
input
.
shape
[
2
:])
logit
=
fluid
.
layers
.
resize_bilinear
(
logit
,
input
.
shape
[
2
:])
if
self
.
training
:
if
self
.
training
:
return
self
.
_get_loss
(
logit
,
label
)
return
self
.
_get_loss
(
logit
,
label
)
else
:
else
:
...
@@ -233,7 +233,7 @@ class DeepLabV3P(dygraph.Layer):
...
@@ -233,7 +233,7 @@ class DeepLabV3P(dygraph.Layer):
pred
=
fluid
.
layers
.
argmax
(
score_map
,
axis
=
3
)
pred
=
fluid
.
layers
.
argmax
(
score_map
,
axis
=
3
)
pred
=
fluid
.
layers
.
unsqueeze
(
pred
,
axes
=
[
3
])
pred
=
fluid
.
layers
.
unsqueeze
(
pred
,
axes
=
[
3
])
return
pred
,
score_map
return
pred
,
score_map
def
init_weight
(
self
,
pretrained_model
=
None
):
def
init_weight
(
self
,
pretrained_model
=
None
):
"""
"""
Initialize the parameters of model parts.
Initialize the parameters of model parts.
...
@@ -271,58 +271,71 @@ class DeepLabV3P(dygraph.Layer):
...
@@ -271,58 +271,71 @@ class DeepLabV3P(dygraph.Layer):
loss
=
loss
*
mask
loss
=
loss
*
mask
avg_loss
=
fluid
.
layers
.
mean
(
loss
)
/
(
avg_loss
=
fluid
.
layers
.
mean
(
loss
)
/
(
fluid
.
layers
.
mean
(
mask
)
+
self
.
EPS
)
fluid
.
layers
.
mean
(
mask
)
+
self
.
EPS
)
label
.
stop_gradient
=
True
label
.
stop_gradient
=
True
mask
.
stop_gradient
=
True
mask
.
stop_gradient
=
True
return
avg_loss
def
build_backbone
(
backbone
,
output_stride
):
return
avg_loss
if
output_stride
==
8
:
dilation_dict
=
{
2
:
2
,
3
:
4
}
elif
output_stride
==
16
:
dilation_dict
=
{
3
:
2
}
else
:
raise
Exception
(
"deeplab only support stride 8 or 16"
)
model_dict
=
{
"ResNet50_vd"
:
resnet_vd
.
ResNet50_vd
,
"ResNet101_vd"
:
resnet_vd
.
ResNet101_vd
,
"Xception65_deeplab"
:
xception_deeplab
.
Xception65_deeplab
}
model
=
model_dict
[
backbone
]
return
model
(
dilation_dict
=
dilation_dict
)
def
build_aspp
(
output_stride
,
using_sep_conv
):
def
build_aspp
(
output_stride
,
using_sep_conv
):
return
ASPP
(
output_stride
=
output_stride
,
using_sep_conv
=
using_sep_conv
)
return
ASPP
(
output_stride
=
output_stride
,
using_sep_conv
=
using_sep_conv
)
def
build_decoder
(
num_classes
,
using_sep_conv
):
def
build_decoder
(
num_classes
,
using_sep_conv
):
return
Decoder
(
num_classes
,
using_sep_conv
=
using_sep_conv
)
return
Decoder
(
num_classes
,
using_sep_conv
=
using_sep_conv
)
@
manager
.
MODELS
.
add_component
def
deeplabv3p_resnet101_vd
(
*
args
,
**
kwargs
):
def
deeplabv3p_resnet101_vd
(
*
args
,
**
kwargs
):
pretrained_model
=
None
pretrained_model
=
None
return
DeepLabV3P
(
backbone
=
'ResNet101_vd'
,
pretrained_model
=
pretrained_model
,
**
kwargs
)
return
DeepLabV3P
(
backbone
=
'ResNet101_vd'
,
pretrained_model
=
pretrained_model
,
**
kwargs
)
@
manager
.
MODELS
.
add_component
def
deeplabv3p_resnet101_vd_os8
(
*
args
,
**
kwargs
):
def
deeplabv3p_resnet101_vd_os8
(
*
args
,
**
kwargs
):
pretrained_model
=
None
pretrained_model
=
None
return
DeepLabV3P
(
backbone
=
'ResNet101_vd'
,
output_stride
=
8
,
pretrained_model
=
pretrained_model
,
**
kwargs
)
return
DeepLabV3P
(
backbone
=
'ResNet101_vd'
,
output_stride
=
8
,
pretrained_model
=
pretrained_model
,
**
kwargs
)
@
manager
.
MODELS
.
add_component
def
deeplabv3p_resnet50_vd
(
*
args
,
**
kwargs
):
def
deeplabv3p_resnet50_vd
(
*
args
,
**
kwargs
):
pretrained_model
=
None
pretrained_model
=
None
return
DeepLabV3P
(
backbone
=
'ResNet50_vd'
,
pretrained_model
=
pretrained_model
,
**
kwargs
)
return
DeepLabV3P
(
backbone
=
'ResNet50_vd'
,
pretrained_model
=
pretrained_model
,
**
kwargs
)
@
manager
.
MODELS
.
add_component
def
deeplabv3p_resnet50_vd_os8
(
*
args
,
**
kwargs
):
def
deeplabv3p_resnet50_vd_os8
(
*
args
,
**
kwargs
):
pretrained_model
=
None
pretrained_model
=
None
return
DeepLabV3P
(
backbone
=
'ResNet50_vd'
,
output_stride
=
8
,
pretrained_model
=
pretrained_model
,
**
kwargs
)
return
DeepLabV3P
(
backbone
=
'ResNet50_vd'
,
output_stride
=
8
,
pretrained_model
=
pretrained_model
,
**
kwargs
)
@
manager
.
MODELS
.
add_component
def
deeplabv3p_xception65_deeplab
(
*
args
,
**
kwargs
):
def
deeplabv3p_xception65_deeplab
(
*
args
,
**
kwargs
):
pretrained_model
=
None
pretrained_model
=
None
return
DeepLabV3P
(
backbone
=
'Xception65_deeplab'
,
return
DeepLabV3P
(
backbone
=
'Xception65_deeplab'
,
pretrained_model
=
pretrained_model
,
pretrained_model
=
pretrained_model
,
backbone_indices
=
(
0
,
1
),
backbone_indices
=
(
0
,
1
),
backbone_channels
=
(
128
,
2048
),
backbone_channels
=
(
128
,
2048
),
**
kwargs
)
**
kwargs
)
\ No newline at end of file
@
manager
.
MODELS
.
add_component
def
deeplabv3p_mobilenetv3_large
(
*
args
,
**
kwargs
):
pretrained_model
=
None
return
DeepLabV3P
(
backbone
=
'MobileNetV3_large_x1_0'
,
pretrained_model
=
pretrained_model
,
backbone_indices
=
(
0
,
3
),
backbone_channels
=
(
24
,
160
),
**
kwargs
)
@
manager
.
MODELS
.
add_component
def
deeplabv3p_mobilenetv3_small
(
*
args
,
**
kwargs
):
pretrained_model
=
None
return
DeepLabV3P
(
backbone
=
'MobileNetV3_small_x1_0'
,
pretrained_model
=
pretrained_model
,
backbone_indices
=
(
0
,
3
),
backbone_channels
=
(
16
,
96
),
**
kwargs
)
dygraph/train.py
浏览文件 @
e5336bb5
...
@@ -19,7 +19,8 @@ from paddle.fluid.dygraph.parallel import ParallelEnv
...
@@ -19,7 +19,8 @@ from paddle.fluid.dygraph.parallel import ParallelEnv
from
dygraph.datasets
import
DATASETS
from
dygraph.datasets
import
DATASETS
import
dygraph.transforms
as
T
import
dygraph.transforms
as
T
from
dygraph.models
import
MODELS
#from dygraph.models import MODELS
from
dygraph.cvlibs
import
manager
from
dygraph.utils
import
get_environ_info
from
dygraph.utils
import
get_environ_info
from
dygraph.core
import
train
from
dygraph.core
import
train
...
@@ -32,7 +33,7 @@ def parse_args():
...
@@ -32,7 +33,7 @@ def parse_args():
'--model_name'
,
'--model_name'
,
dest
=
'model_name'
,
dest
=
'model_name'
,
help
=
'Model type for training, which is one of {}'
.
format
(
help
=
'Model type for training, which is one of {}'
.
format
(
str
(
list
(
MODELS
.
keys
()))),
str
(
list
(
manager
.
MODELS
.
components_dict
.
keys
()))),
type
=
str
,
type
=
str
,
default
=
'UNet'
)
default
=
'UNet'
)
...
@@ -160,11 +161,8 @@ def main(args):
...
@@ -160,11 +161,8 @@ def main(args):
transforms
=
eval_transforms
,
transforms
=
eval_transforms
,
mode
=
'val'
)
mode
=
'val'
)
if
args
.
model_name
not
in
MODELS
:
raise
Exception
(
model
=
manager
.
MODELS
[
args
.
model_name
](
num_classes
=
train_dataset
.
num_classes
)
'`--model_name` is invalid. it should be one of {}'
.
format
(
str
(
list
(
MODELS
.
keys
()))))
model
=
MODELS
[
args
.
model_name
](
num_classes
=
train_dataset
.
num_classes
)
# Creat optimizer
# Creat optimizer
# todo, may less one than len(loader)
# todo, may less one than len(loader)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录