Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleSeg
提交
e23580ed
P
PaddleSeg
项目概览
PaddlePaddle
/
PaddleSeg
通知
286
Star
8
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
53
列表
看板
标记
里程碑
合并请求
3
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleSeg
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
53
Issue
53
列表
看板
标记
里程碑
合并请求
3
合并请求
3
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e23580ed
编写于
8月 26, 2019
作者:
W
wuzewu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Update configs
上级
221e100d
变更
11
隐藏空白更改
内联
并排
Showing
11 changed file
with
2 addition
and
242 deletion
+2
-242
configs/cityscape.yaml
configs/cityscape.yaml
+0
-2
configs/coco.yaml
configs/coco.yaml
+0
-2
configs/humanseg.yaml
configs/humanseg.yaml
+0
-57
configs/line.yaml
configs/line.yaml
+0
-57
configs/unet_pet.yaml
configs/unet_pet.yaml
+0
-2
pdseg/utils/config.py
pdseg/utils/config.py
+2
-2
test/configs/deeplabv3p_mobilenetv2_line.yaml
test/configs/deeplabv3p_mobilenetv2_line.yaml
+0
-55
test/configs/deeplabv3p_xception65_cityscapes.yaml
test/configs/deeplabv3p_xception65_cityscapes.yaml
+0
-2
test/configs/deeplabv3p_xception65_humanseg.yaml
test/configs/deeplabv3p_xception65_humanseg.yaml
+0
-57
test/configs/unet_coco.yaml
test/configs/unet_coco.yaml
+0
-4
test/configs/unet_pet.yaml
test/configs/unet_pet.yaml
+0
-2
未找到文件。
configs/cityscape.yaml
浏览文件 @
e23580ed
...
...
@@ -23,8 +23,6 @@ AUG:
CONTRAST_JITTER_RATIO
:
0.5
SATURATION_JITTER_RATIO
:
0.5
BATCH_SIZE
:
4
MEAN
:
[
0.5
,
0.5
,
0.5
]
STD
:
[
0.5
,
0.5
,
0.5
]
DATASET
:
DATA_DIR
:
"
./dataset/cityscapes/"
IMAGE_TYPE
:
"
rgb"
# choice rgb or rgba
...
...
configs/coco.yaml
浏览文件 @
e23580ed
...
...
@@ -23,8 +23,6 @@ AUG:
CONTRAST_JITTER_RATIO
:
0.5
SATURATION_JITTER_RATIO
:
0.5
BATCH_SIZE
:
8
MEAN
:
[
104.008
,
116.669
,
122.675
]
STD
:
[
1.0
,
1.0
,
1.0
]
DATASET
:
DATA_DIR
:
"
./data/COCO2014/"
IMAGE_TYPE
:
"
rgb"
# choice rgb or rgba
...
...
configs/humanseg.yaml
已删除
100644 → 0
浏览文件 @
221e100d
TRAIN_CROP_SIZE
:
(513, 513)
# (width, height), for unpadding rangescaling and stepscaling
EVAL_CROP_SIZE
:
(513, 513)
# (width, height), for unpadding rangescaling and stepscaling
AUG
:
AUG_METHOD
:
u"unpadding"
# choice unpadding rangescaling and stepscaling
FIX_RESIZE_SIZE
:
(513, 513)
# (width, height), for unpadding
INF_RESIZE_VALUE
:
513
# for rangescaling
MAX_RESIZE_VALUE
:
400
# for rangescaling
MIN_RESIZE_VALUE
:
513
# for rangescaling
MAX_SCALE_FACTOR
:
2.0
# for stepscaling
MIN_SCALE_FACTOR
:
0.5
# for stepscaling
SCALE_STEP_SIZE
:
0.25
# for stepscaling
MIRROR
:
True
RICH_CROP
:
ENABLE
:
True
ASPECT_RATIO
:
0
BLUR
:
True
BLUR_RATIO
:
0.1
FLIP
:
True
FLIP_RATIO
:
0.2
MAX_ROTATION
:
45
MIN_AREA_RATIO
:
0
BRIGHTNESS_JITTER_RATIO
:
0.5
CONTRAST_JITTER_RATIO
:
0.5
SATURATION_JITTER_RATIO
:
0.5
BATCH_SIZE
:
24
MEAN
:
[
104.008
,
116.669
,
122.675
]
STD
:
[
1.0
,
1.0
,
1.0
]
DATASET
:
DATA_DIR
:
u"./data/humanseg/"
IMAGE_TYPE
:
"
rgb"
# choice rgb or rgba
NUM_CLASSES
:
2
TEST_FILE_LIST
:
u"data/humanseg/list/val.txt"
TRAIN_FILE_LIST
:
u"data/humanseg/list/train.txt"
VAL_FILE_LIST
:
u"data/humanseg/list/val.txt"
IGNORE_INDEX
:
255
SEPARATOR
:
"
|"
FREEZE
:
MODEL_FILENAME
:
u"model"
PARAMS_FILENAME
:
u"params"
SAVE_DIR
:
u"human_freeze_model"
MODEL
:
DEFAULT_NORM_TYPE
:
u"bn"
MODEL_NAME
:
"
deeplabv3p"
DEEPLAB
:
BACKBONE
:
"
xception_65"
TEST
:
TEST_MODEL
:
"
snapshots/humanseg/aic_v2/final/"
TRAIN
:
MODEL_SAVE_DIR
:
"
snapshots/humanseg/aic_v2/"
PRETRAINED_MODEL
:
u"pretrain/xception65_pretrained/"
RESUME
:
False
SNAPSHOT_EPOCH
:
5
SOLVER
:
LR
:
0.1
NUM_EPOCHS
:
40
LR_POLICY
:
"
poly"
OPTIMIZER
:
"
sgd"
configs/line.yaml
已删除
100644 → 0
浏览文件 @
221e100d
EVAL_CROP_SIZE
:
(1536, 576)
# (width, height), for unpadding rangescaling and stepscaling
TRAIN_CROP_SIZE
:
(1536, 576)
# (width, height), for unpadding rangescaling and stepscaling
AUG
:
AUG_METHOD
:
u"unpadding"
# choice unpadding rangescaling and stepscaling
FIX_RESIZE_SIZE
:
(1536, 576)
# (width, height), for unpadding
INF_RESIZE_VALUE
:
1280
# for rangescaling
MAX_RESIZE_VALUE
:
1024
# for rangescaling
MIN_RESIZE_VALUE
:
1536
# for rangescaling
MAX_SCALE_FACTOR
:
2.0
# for stepscaling
MIN_SCALE_FACTOR
:
0.5
# for stepscaling
SCALE_STEP_SIZE
:
0.25
# for stepscaling
MIRROR
:
True
RICH_CROP
:
ENABLE
:
False
ASPECT_RATIO
:
0.33
BLUR
:
True
BLUR_RATIO
:
0.1
FLIP
:
True
FLIP_RATIO
:
0.2
MAX_ROTATION
:
15
MIN_AREA_RATIO
:
0.5
BRIGHTNESS_JITTER_RATIO
:
0.5
CONTRAST_JITTER_RATIO
:
0.5
SATURATION_JITTER_RATIO
:
0.5
BATCH_SIZE
:
1
MEAN
:
[
127.5
,
127.5
,
127.5
]
STD
:
[
127.5
,
127.5
,
127.5
]
DATASET
:
DATA_DIR
:
"
./data/line/L4_lane_mask_dataset_app/L4_360_0_2class/"
IMAGE_TYPE
:
"
rgb"
# choice rgb or rgba
NUM_CLASSES
:
2
TEST_FILE_LIST
:
"
data/line/L4_lane_mask_dataset_app/L4_360_0_2class/val.txt"
TRAIN_FILE_LIST
:
"
data/line/L4_lane_mask_dataset_app/L4_360_0_2class/train.txt"
VAL_FILE_LIST
:
"
data/line/L4_lane_mask_dataset_app/L4_360_0_2class/val.txt"
SEPARATOR
:
"
"
IGNORE_INDEX
:
255
FREEZE
:
MODEL_FILENAME
:
"
__model__"
PARAMS_FILENAME
:
"
__params__"
SAVE_DIR
:
"
line_freeze_model"
MODEL
:
DEFAULT_NORM_TYPE
:
"
bn"
MODEL_NAME
:
"
deeplabv3p"
DEEPLAB
:
BACKBONE
:
"
mobilenet"
TEST
:
TEST_MODEL
:
"
snapshots/line_v4/final/"
TRAIN
:
MODEL_SAVE_DIR
:
"
snapshots/line_v4/"
PRETRAINED_MODEL
:
u"pretrain/MobileNetV2_pretrained/"
RESUME
:
False
SNAPSHOT_EPOCH
:
10
SOLVER
:
LR
:
0.01
LR_POLICY
:
"
poly"
OPTIMIZER
:
"
sgd"
NUM_EPOCHS
:
40
configs/unet_pet.yaml
浏览文件 @
e23580ed
...
...
@@ -25,8 +25,6 @@ AUG:
CONTRAST_JITTER_RATIO
:
0.5
SATURATION_JITTER_RATIO
:
0.5
BATCH_SIZE
:
4
MEAN
:
[
104.008
,
116.669
,
122.675
]
STD
:
[
1.0
,
1.0
,
1.0
]
DATASET
:
DATA_DIR
:
"
./dataset/mini_pet/"
IMAGE_TYPE
:
"
rgb"
# choice rgb or rgba
...
...
pdseg/utils/config.py
浏览文件 @
e23580ed
...
...
@@ -22,9 +22,9 @@ cfg = SegConfig()
########################## 基本配置 ###########################################
# 均值,图像预处理减去的均值
cfg
.
MEAN
=
[
104.008
,
116.669
,
122.67
5
]
cfg
.
MEAN
=
[
0.5
,
0.5
,
0.
5
]
# 标准差,图像预处理除以标准差·
cfg
.
STD
=
[
1.000
,
1.000
,
1.000
]
cfg
.
STD
=
[
0.5
,
0.5
,
0.5
]
# 批处理大小
cfg
.
BATCH_SIZE
=
1
# 验证时图像裁剪尺寸(宽,高)
...
...
test/configs/deeplabv3p_mobilenetv2_line.yaml
已删除
100644 → 0
浏览文件 @
221e100d
EVAL_CROP_SIZE
:
(1536, 576)
# (width, height), for unpadding rangescaling and stepscaling
TRAIN_CROP_SIZE
:
(1536, 576)
# (width, height), for unpadding rangescaling and stepscaling
AUG
:
AUG_METHOD
:
"
unpadding"
# choice unpadding rangescaling and stepscaling
FIX_RESIZE_SIZE
:
(1536, 576)
# (width, height), for unpadding
INF_RESIZE_VALUE
:
1280
# for rangescaling
MAX_RESIZE_VALUE
:
1024
# for rangescaling
MIN_RESIZE_VALUE
:
1536
# for rangescaling
MAX_SCALE_FACTOR
:
2.0
# for stepscaling
MIN_SCALE_FACTOR
:
0.5
# for stepscaling
SCALE_STEP_SIZE
:
0.25
# for stepscaling
MIRROR
:
True
RICH_CROP
:
ENABLE
:
False
ASPECT_RATIO
:
0.33
BLUR
:
True
BLUR_RATIO
:
0.1
FLIP
:
True
FLIP_RATIO
:
0.2
MAX_ROTATION
:
15
MIN_AREA_RATIO
:
0.5
BRIGHTNESS_JITTER_RATIO
:
0.5
CONTRAST_JITTER_RATIO
:
0.5
SATURATION_JITTER_RATIO
:
0.5
BATCH_SIZE
:
1
MEAN
:
[
127.5
,
127.5
,
127.5
]
STD
:
[
127.5
,
127.5
,
127.5
]
DATASET
:
DATA_DIR
:
"
./dataset/line/"
IMAGE_TYPE
:
"
rgb"
# choice rgb or rgba
NUM_CLASSES
:
2
TEST_FILE_LIST
:
"
./dataset/line/test_list.txt"
SEPARATOR
:
"
"
IGNORE_INDEX
:
255
FREEZE
:
MODEL_FILENAME
:
"
__model__"
PARAMS_FILENAME
:
"
__params__"
SAVE_DIR
:
"
line_freeze_model"
MODEL
:
DEFAULT_NORM_TYPE
:
"
bn"
MODEL_NAME
:
"
deeplabv3p"
DEEPLAB
:
BACKBONE
:
"
mobilenet"
TEST
:
TEST_MODEL
:
"
./test/models/line/"
TRAIN
:
MODEL_SAVE_DIR
:
"
snapshots/line_v4/"
PRETRAINED_MODEL
:
"
./models/deeplabv3p_mobilenetv2_init/"
RESUME
:
False
SNAPSHOT_EPOCH
:
40
SOLVER
:
LR
:
0.01
LR_POLICY
:
"
poly"
OPTIMIZER
:
"
sgd"
SNAPSHOT
:
10
test/configs/deeplabv3p_xception65_cityscapes.yaml
浏览文件 @
e23580ed
...
...
@@ -23,8 +23,6 @@ AUG:
CONTRAST_JITTER_RATIO
:
0.5
SATURATION_JITTER_RATIO
:
0.5
BATCH_SIZE
:
4
MEAN
:
[
0.5
,
0.5
,
0.5
]
STD
:
[
0.5
,
0.5
,
0.5
]
DATASET
:
DATA_DIR
:
"
./dataset/cityscapes/"
IMAGE_TYPE
:
"
rgb"
# choice rgb or rgba
...
...
test/configs/deeplabv3p_xception65_humanseg.yaml
已删除
100644 → 0
浏览文件 @
221e100d
TRAIN_CROP_SIZE
:
(513, 513)
# (width, height), for unpadding rangescaling and stepscaling
EVAL_CROP_SIZE
:
(513, 513)
# (width, height), for unpadding rangescaling and stepscaling
AUG
:
AUG_METHOD
:
u"unpadding"
# choice unpadding rangescaling and stepscaling
FIX_RESIZE_SIZE
:
(513, 513)
# (width, height), for unpadding
INF_RESIZE_VALUE
:
513
# for rangescaling
MAX_RESIZE_VALUE
:
400
# for rangescaling
MIN_RESIZE_VALUE
:
513
# for rangescaling
MAX_SCALE_FACTOR
:
2.0
# for stepscaling
MIN_SCALE_FACTOR
:
0.5
# for stepscaling
SCALE_STEP_SIZE
:
0.25
# for stepscaling
MIRROR
:
True
RICH_CROP
:
ENABLE
:
True
ASPECT_RATIO
:
0
BLUR
:
True
BLUR_RATIO
:
0.1
FLIP
:
True
FLIP_RATIO
:
0.2
MAX_ROTATION
:
45
MIN_AREA_RATIO
:
0
BRIGHTNESS_JITTER_RATIO
:
0.5
CONTRAST_JITTER_RATIO
:
0.5
SATURATION_JITTER_RATIO
:
0.5
BATCH_SIZE
:
24
MEAN
:
[
104.008
,
116.669
,
122.675
]
STD
:
[
1.0
,
1.0
,
1.0
]
DATASET
:
DATA_DIR
:
u"./data/humanseg/"
IMAGE_TYPE
:
"
rgb"
# choice rgb or rgba
NUM_CLASSES
:
2
TEST_FILE_LIST
:
u"data/humanseg/list/val.txt"
TRAIN_FILE_LIST
:
u"data/humanseg/list/train.txt"
VAL_FILE_LIST
:
u"data/humanseg/list/val.txt"
IGNORE_INDEX
:
255
SEPARATOR
:
"
|"
FREEZE
:
MODEL_FILENAME
:
"
__model__"
PARAMS_FILENAME
:
"
__params__"
SAVE_DIR
:
"
human_freeze_model"
MODEL
:
DEFAULT_NORM_TYPE
:
u"bn"
MODEL_NAME
:
"
deeplabv3p"
DEEPLAB
:
BACKBONE
:
"
xception_65"
TEST
:
TEST_MODEL
:
"
snapshots/humanseg/aic_v2/final/"
TRAIN
:
MODEL_SAVE_DIR
:
"
snapshots/humanseg/aic_v2/"
PRETRAINED_MODEL
:
"
pretrain/xception65_pretrained/"
RESUME
:
False
SNAPSHOT_EPOCH
:
5
SOLVER
:
LR
:
0.1
NUM_EPOCHS
:
40
LR_POLICY
:
"
poly"
OPTIMIZER
:
"
sgd"
test/configs/unet_coco.yaml
浏览文件 @
e23580ed
...
...
@@ -23,10 +23,6 @@ AUG:
CONTRAST_JITTER_RATIO
:
0.5
SATURATION_JITTER_RATIO
:
0.5
BATCH_SIZE
:
10
#MEAN: [104.008, 116.669, 122.675]
#STD: [1.0, 1.0, 1.0]
MEAN
:
[
127.5
,
127.5
,
127.5
]
STD
:
[
127.5
,
127.5
,
127.5
]
DATASET
:
DATA_DIR
:
"
./data/COCO2014/"
IMAGE_TYPE
:
"
rgb"
# choice rgb or rgba
...
...
test/configs/unet_pet.yaml
浏览文件 @
e23580ed
...
...
@@ -25,8 +25,6 @@ AUG:
CONTRAST_JITTER_RATIO
:
0.5
SATURATION_JITTER_RATIO
:
0.5
BATCH_SIZE
:
6
MEAN
:
[
104.008
,
116.669
,
122.675
]
STD
:
[
1.0
,
1.0
,
1.0
]
DATASET
:
DATA_DIR
:
"
./dataset/pet/"
IMAGE_TYPE
:
"
rgb"
# choice rgb or rgba
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录