Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleSeg
提交
e1e186ad
P
PaddleSeg
项目概览
PaddlePaddle
/
PaddleSeg
通知
289
Star
8
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
53
列表
看板
标记
里程碑
合并请求
3
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleSeg
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
53
Issue
53
列表
看板
标记
里程碑
合并请求
3
合并请求
3
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
e1e186ad
编写于
6月 16, 2020
作者:
C
chenguowei01
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add parallel training
上级
76fef60e
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
114 addition
and
85 deletion
+114
-85
dygraph/datasets/optic_disc_seg.py
dygraph/datasets/optic_disc_seg.py
+1
-1
dygraph/train.py
dygraph/train.py
+27
-19
dygraph/utils/logging.py
dygraph/utils/logging.py
+11
-7
dygraph/val.py
dygraph/val.py
+75
-58
未找到文件。
dygraph/datasets/optic_disc_seg.py
浏览文件 @
e1e186ad
...
@@ -57,7 +57,7 @@ class OpticDiscSeg(Dataset):
...
@@ -57,7 +57,7 @@ class OpticDiscSeg(Dataset):
if
mode
==
'train'
:
if
mode
==
'train'
:
file_list
=
os
.
path
.
join
(
self
.
data_dir
,
'train_list.txt'
)
file_list
=
os
.
path
.
join
(
self
.
data_dir
,
'train_list.txt'
)
elif
mode
==
'eval'
:
elif
mode
==
'eval'
:
file_list
=
os
.
pa
ht
.
join
(
self
.
data_dir
,
'val_list.txt'
)
file_list
=
os
.
pa
th
.
join
(
self
.
data_dir
,
'val_list.txt'
)
else
:
else
:
file_list
=
os
.
path
.
join
(
self
.
data_dir
,
'test_list.txt'
)
file_list
=
os
.
path
.
join
(
self
.
data_dir
,
'test_list.txt'
)
else
:
else
:
...
...
dygraph/train.py
浏览文件 @
e1e186ad
...
@@ -132,12 +132,19 @@ def train(model,
...
@@ -132,12 +132,19 @@ def train(model,
save_interval_epochs
=
1
,
save_interval_epochs
=
1
,
num_classes
=
None
,
num_classes
=
None
,
num_workers
=
8
):
num_workers
=
8
):
ignore_index
=
model
.
ignore_index
nranks
=
ParallelEnv
().
nranks
load_pretrained_model
(
model
,
pretrained_model
)
if
not
os
.
path
.
isdir
(
save_dir
):
if
not
os
.
path
.
isdir
(
save_dir
):
if
os
.
path
.
exists
(
save_dir
):
if
os
.
path
.
exists
(
save_dir
):
os
.
remove
(
save_dir
)
os
.
remove
(
save_dir
)
os
.
makedirs
(
save_dir
)
os
.
makedirs
(
save_dir
)
load_pretrained_model
(
model
,
pretrained_model
)
if
nranks
>
1
:
strategy
=
fluid
.
dygraph
.
prepare_context
()
model_parallel
=
fluid
.
dygraph
.
DataParallel
(
model
,
strategy
)
batch_sampler
=
DistributedBatchSampler
(
batch_sampler
=
DistributedBatchSampler
(
train_dataset
,
batch_size
=
batch_size
,
shuffle
=
True
,
drop_last
=
True
)
train_dataset
,
batch_size
=
batch_size
,
shuffle
=
True
,
drop_last
=
True
)
...
@@ -155,32 +162,39 @@ def train(model,
...
@@ -155,32 +162,39 @@ def train(model,
for
step
,
data
in
enumerate
(
loader
):
for
step
,
data
in
enumerate
(
loader
):
images
=
data
[
0
]
images
=
data
[
0
]
labels
=
data
[
1
].
astype
(
'int64'
)
labels
=
data
[
1
].
astype
(
'int64'
)
loss
=
model
(
images
,
labels
,
mode
=
'train'
)
if
nranks
>
1
:
loss
.
backward
()
loss
=
model_parallel
(
images
,
labels
,
mode
=
'train'
)
loss
=
model_parallel
.
scale_loss
(
loss
)
loss
.
backward
()
model_parallel
.
apply_collective_grads
()
else
:
loss
=
model
(
images
,
labels
,
mode
=
'train'
)
loss
.
backward
()
optimizer
.
minimize
(
loss
)
optimizer
.
minimize
(
loss
)
model_parallel
.
clear_gradients
()
logging
.
info
(
"[TRAIN] Epoch={}/{}, Step={}/{}, loss={}"
.
format
(
logging
.
info
(
"[TRAIN] Epoch={}/{}, Step={}/{}, loss={}"
.
format
(
epoch
+
1
,
num_epochs
,
step
+
1
,
num_steps_each_epoch
,
epoch
+
1
,
num_epochs
,
step
+
1
,
num_steps_each_epoch
,
loss
.
numpy
()))
loss
.
numpy
()))
if
(
if
(
(
epoch
+
1
)
%
save_interval_epochs
==
0
epoch
+
1
or
num_steps_each_epoch
==
num_epochs
-
1
)
%
save_interval_epochs
==
0
or
num_steps_each_epoch
==
num_epochs
-
1
:
)
and
ParallelEnv
().
local_rank
==
0
:
current_save_dir
=
os
.
path
.
join
(
save_dir
,
current_save_dir
=
os
.
path
.
join
(
save_dir
,
"epoch_{}"
.
format
(
epoch
+
1
))
"epoch_{}"
.
format
(
epoch
+
1
))
if
not
os
.
path
.
isdir
(
current_save_dir
):
if
not
os
.
path
.
isdir
(
current_save_dir
):
os
.
makedirs
(
current_save_dir
)
os
.
makedirs
(
current_save_dir
)
fluid
.
save_dygraph
(
model
.
state_dict
(),
fluid
.
save_dygraph
(
model
_parallel
.
state_dict
(),
os
.
path
.
join
(
current_save_dir
,
'model'
))
os
.
path
.
join
(
current_save_dir
,
'model'
))
if
eval_dataset
is
not
None
:
if
eval_dataset
is
not
None
:
model
.
eval
()
evaluate
(
evaluate
(
model
,
model
,
eval_dataset
,
eval_dataset
,
places
=
places
,
model_dir
=
current_save_dir
,
model_dir
=
current_save_dir
,
num_classes
=
num_classes
,
num_classes
=
num_classes
,
batch_size
=
batch_size
,
batch_size
=
batch_size
,
ignore_index
=
model
.
ignore_index
,
ignore_index
=
ignore_index
,
epoch_id
=
epoch
+
1
)
epoch_id
=
epoch
+
1
)
model
.
train
()
model
.
train
()
...
@@ -188,7 +202,7 @@ def train(model,
...
@@ -188,7 +202,7 @@ def train(model,
def
main
(
args
):
def
main
(
args
):
env_info
=
get_environ_info
()
env_info
=
get_environ_info
()
places
=
fluid
.
CUDAPlace
(
ParallelEnv
().
dev_id
)
\
places
=
fluid
.
CUDAPlace
(
ParallelEnv
().
dev_id
)
\
if
env_info
[
'place'
]
==
'
gpu
'
and
fluid
.
is_compiled_with_cuda
()
\
if
env_info
[
'place'
]
==
'
cuda
'
and
fluid
.
is_compiled_with_cuda
()
\
else
fluid
.
CPUPlace
()
else
fluid
.
CPUPlace
()
with
fluid
.
dygraph
.
guard
(
places
):
with
fluid
.
dygraph
.
guard
(
places
):
...
@@ -200,18 +214,13 @@ def main(args):
...
@@ -200,18 +214,13 @@ def main(args):
])
])
train_dataset
=
OpticDiscSeg
(
transforms
=
train_transforms
,
mode
=
'train'
)
train_dataset
=
OpticDiscSeg
(
transforms
=
train_transforms
,
mode
=
'train'
)
eval_dataset
=
None
if
args
.
val_list
is
not
None
:
if
args
.
val_list
is
not
None
:
eval_transforms
=
T
.
Compose
(
eval_transforms
=
T
.
Compose
(
[
T
.
Resize
(
args
.
input_size
),
[
T
.
Resize
(
args
.
input_size
),
T
.
Normalize
()])
T
.
Normalize
()])
eval_dataset
=
Dataset
(
eval_dataset
=
OpticDiscSeg
(
data_dir
=
args
.
data_dir
,
transforms
=
train_transforms
,
mode
=
'eval'
)
file_list
=
args
.
val_list
,
transforms
=
eval_transforms
,
num_workers
=
'auto'
,
buffer_size
=
100
,
parallel_method
=
'thread'
,
shuffle
=
False
)
if
args
.
model_name
==
'UNet'
:
if
args
.
model_name
==
'UNet'
:
model
=
models
.
UNet
(
num_classes
=
args
.
num_classes
,
ignore_index
=
255
)
model
=
models
.
UNet
(
num_classes
=
args
.
num_classes
,
ignore_index
=
255
)
...
@@ -244,5 +253,4 @@ def main(args):
...
@@ -244,5 +253,4 @@ def main(args):
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
args
=
parse_args
()
args
=
parse_args
()
print
(
args
)
main
(
args
)
main
(
args
)
dygraph/utils/logging.py
浏览文件 @
e1e186ad
...
@@ -16,18 +16,22 @@ import time
...
@@ -16,18 +16,22 @@ import time
import
os
import
os
import
sys
import
sys
from
paddle.fluid.dygraph.parallel
import
ParallelEnv
levels
=
{
0
:
'ERROR'
,
1
:
'WARNING'
,
2
:
'INFO'
,
3
:
'DEBUG'
}
levels
=
{
0
:
'ERROR'
,
1
:
'WARNING'
,
2
:
'INFO'
,
3
:
'DEBUG'
}
log_level
=
2
log_level
=
2
def
log
(
level
=
2
,
message
=
""
):
def
log
(
level
=
2
,
message
=
""
):
current_time
=
time
.
time
()
if
ParallelEnv
().
local_rank
==
0
:
time_array
=
time
.
localtime
(
current_time
)
current_time
=
time
.
time
()
current_time
=
time
.
strftime
(
"%Y-%m-%d %H:%M:%S"
,
time_array
)
time_array
=
time
.
localtime
(
current_time
)
if
log_level
>=
level
:
current_time
=
time
.
strftime
(
"%Y-%m-%d %H:%M:%S"
,
time_array
)
print
(
"{} [{}]
\t
{}"
.
format
(
current_time
,
levels
[
level
],
if
log_level
>=
level
:
message
).
encode
(
"utf-8"
).
decode
(
"latin1"
))
print
(
sys
.
stdout
.
flush
()
"{} [{}]
\t
{}"
.
format
(
current_time
,
levels
[
level
],
message
).
encode
(
"utf-8"
).
decode
(
"latin1"
))
sys
.
stdout
.
flush
()
def
debug
(
message
=
""
):
def
debug
(
message
=
""
):
...
...
dygraph/val.py
浏览文件 @
e1e186ad
...
@@ -19,6 +19,7 @@ import math
...
@@ -19,6 +19,7 @@ import math
from
paddle.fluid.dygraph.base
import
to_variable
from
paddle.fluid.dygraph.base
import
to_variable
import
numpy
as
np
import
numpy
as
np
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
from
paddle.fluid.io
import
DataLoader
from
datasets
import
Dataset
from
datasets
import
Dataset
import
transforms
as
T
import
transforms
as
T
...
@@ -26,57 +27,66 @@ import models
...
@@ -26,57 +27,66 @@ import models
import
utils.logging
as
logging
import
utils.logging
as
logging
from
utils
import
get_environ_info
from
utils
import
get_environ_info
from
utils
import
ConfusionMatrix
from
utils
import
ConfusionMatrix
from
utils
import
DistributedBatchSampler
def
parse_args
():
def
parse_args
():
parser
=
argparse
.
ArgumentParser
(
description
=
'Model training'
)
parser
=
argparse
.
ArgumentParser
(
description
=
'Model training'
)
# params of model
# params of model
parser
.
add_argument
(
'--model_name'
,
parser
.
add_argument
(
dest
=
'model_name'
,
'--model_name'
,
help
=
"Model type for traing, which is one of ('UNet')"
,
dest
=
'model_name'
,
type
=
str
,
help
=
"Model type for traing, which is one of ('UNet')"
,
default
=
'UNet'
)
type
=
str
,
default
=
'UNet'
)
# params of dataset
# params of dataset
parser
.
add_argument
(
'--data_dir'
,
parser
.
add_argument
(
dest
=
'data_dir'
,
'--data_dir'
,
help
=
'The root directory of dataset'
,
dest
=
'data_dir'
,
type
=
str
)
help
=
'The root directory of dataset'
,
parser
.
add_argument
(
'--val_list'
,
type
=
str
)
dest
=
'val_list'
,
parser
.
add_argument
(
help
=
'Val list file of dataset'
,
'--val_list'
,
type
=
str
,
dest
=
'val_list'
,
default
=
None
)
help
=
'Val list file of dataset'
,
parser
.
add_argument
(
'--num_classes'
,
type
=
str
,
dest
=
'num_classes'
,
default
=
None
)
help
=
'Number of classes'
,
parser
.
add_argument
(
type
=
int
,
'--num_classes'
,
default
=
2
)
dest
=
'num_classes'
,
help
=
'Number of classes'
,
type
=
int
,
default
=
2
)
# params of evaluate
# params of evaluate
parser
.
add_argument
(
"--input_size"
,
parser
.
add_argument
(
dest
=
"input_size"
,
"--input_size"
,
help
=
"The image size for net inputs."
,
dest
=
"input_size"
,
nargs
=
2
,
help
=
"The image size for net inputs."
,
default
=
[
512
,
512
],
nargs
=
2
,
type
=
int
)
default
=
[
512
,
512
],
parser
.
add_argument
(
'--batch_size'
,
type
=
int
)
dest
=
'batch_size'
,
parser
.
add_argument
(
help
=
'Mini batch size'
,
'--batch_size'
,
type
=
int
,
dest
=
'batch_size'
,
default
=
2
)
help
=
'Mini batch size'
,
parser
.
add_argument
(
'--model_dir'
,
type
=
int
,
dest
=
'model_dir'
,
default
=
2
)
help
=
'The path of model for evaluation'
,
parser
.
add_argument
(
type
=
str
,
'--model_dir'
,
default
=
None
)
dest
=
'model_dir'
,
help
=
'The path of model for evaluation'
,
type
=
str
,
default
=
None
)
return
parser
.
parse_args
()
return
parser
.
parse_args
()
def
evaluate
(
model
,
def
evaluate
(
model
,
eval_dataset
=
None
,
eval_dataset
=
None
,
places
=
None
,
model_dir
=
None
,
model_dir
=
None
,
num_classes
=
None
,
num_classes
=
None
,
batch_size
=
2
,
batch_size
=
2
,
...
@@ -87,18 +97,23 @@ def evaluate(model,
...
@@ -87,18 +97,23 @@ def evaluate(model,
model
.
set_dict
(
para_state_dict
)
model
.
set_dict
(
para_state_dict
)
model
.
eval
()
model
.
eval
()
data_generator
=
eval_dataset
.
generator
(
batch_size
=
batch_size
,
batch_sampler
=
DistributedBatchSampler
(
drop_last
=
True
)
eval_dataset
,
batch_size
=
batch_size
,
shuffle
=
True
,
drop_last
=
False
)
loader
=
DataLoader
(
eval_dataset
,
batch_sampler
=
batch_sampler
,
places
=
places
,
return_list
=
True
,
)
total_steps
=
math
.
ceil
(
eval_dataset
.
num_samples
*
1.0
/
batch_size
)
total_steps
=
math
.
ceil
(
eval_dataset
.
num_samples
*
1.0
/
batch_size
)
conf_mat
=
ConfusionMatrix
(
num_classes
,
streaming
=
True
)
conf_mat
=
ConfusionMatrix
(
num_classes
,
streaming
=
True
)
logging
.
info
(
logging
.
info
(
"Start to evaluating(total_samples={}, total_steps={})..."
.
format
(
"Start to evaluating(total_samples={}, total_steps={})..."
.
format
(
eval_dataset
.
num_samples
,
total_steps
))
eval_dataset
.
num_samples
,
total_steps
))
for
step
,
data
in
enumerate
(
data_generator
()):
for
step
,
data
in
enumerate
(
loader
):
images
=
np
.
array
([
d
[
0
]
for
d
in
data
])
images
=
data
[
0
]
labels
=
np
.
array
([
d
[
2
]
for
d
in
data
]).
astype
(
'int64'
)
labels
=
data
[
1
].
astype
(
'int64'
)
images
=
to_variable
(
images
)
pred
,
_
=
model
(
images
,
labels
,
mode
=
'eval'
)
pred
,
_
=
model
(
images
,
labels
,
mode
=
'eval'
)
pred
=
pred
.
numpy
()
pred
=
pred
.
numpy
()
...
@@ -120,31 +135,33 @@ def evaluate(model,
...
@@ -120,31 +135,33 @@ def evaluate(model,
def
main
(
args
):
def
main
(
args
):
env_info
=
get_environ_info
()
if
env_info
[
'place'
]
==
'cpu'
:
places
=
fluid
.
CPUPlace
()
else
:
places
=
fluid
.
CUDAPlace
(
0
)
with
fluid
.
dygraph
.
guard
(
places
):
with
fluid
.
dygraph
.
guard
(
places
):
eval_transforms
=
T
.
Compose
([
T
.
Resize
(
args
.
input_size
),
T
.
Normalize
()])
eval_transforms
=
T
.
Compose
([
T
.
Resize
(
args
.
input_size
),
T
.
Normalize
()])
eval_dataset
=
Dataset
(
data_dir
=
args
.
data_dir
,
eval_dataset
=
Dataset
(
file_list
=
args
.
val_list
,
data_dir
=
args
.
data_dir
,
transforms
=
eval_transforms
,
file_list
=
args
.
val_list
,
num_workers
=
'auto'
,
transforms
=
eval_transforms
,
buffer_size
=
100
,
num_workers
=
'auto'
,
parallel_method
=
'thread'
,
buffer_size
=
100
,
shuffle
=
False
)
parallel_method
=
'thread'
,
shuffle
=
False
)
if
args
.
model_name
==
'UNet'
:
if
args
.
model_name
==
'UNet'
:
model
=
models
.
UNet
(
num_classes
=
args
.
num_classes
)
model
=
models
.
UNet
(
num_classes
=
args
.
num_classes
)
evaluate
(
model
,
evaluate
(
eval_dataset
,
model
,
model_dir
=
args
.
model_dir
,
eval_dataset
,
num_classes
=
args
.
num_classes
,
model_dir
=
args
.
model_dir
,
batch_size
=
args
.
batch_size
)
num_classes
=
args
.
num_classes
,
batch_size
=
args
.
batch_size
)
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
args
=
parse_args
()
args
=
parse_args
()
env_info
=
get_environ_info
()
if
env_info
[
'place'
]
==
'cpu'
:
places
=
fluid
.
CPUPlace
()
else
:
places
=
fluid
.
CUDAPlace
(
0
)
main
(
args
)
main
(
args
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录