提交 dc837a2e 编写于 作者: C chenguowei01

Merge branch 'dygraph' of github.com:wuyefeilin/PaddleSeg into dygraph

......@@ -12,5 +12,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from .dataset import Dataset
from .optic_disc_seg import OpticDiscSeg
from .cityscapes import Cityscapes
......@@ -14,8 +14,7 @@
import os
from paddle.fluid.io import Dataset
from .dataset import Dataset
from utils.download import download_file_and_uncompress
DATA_HOME = os.path.expanduser('~/.cache/paddle/dataset')
......@@ -70,16 +69,3 @@ class Cityscapes(Dataset):
image_path = os.path.join(self.data_dir, items[0])
grt_path = os.path.join(self.data_dir, items[1])
self.file_list.append([image_path, grt_path])
def __getitem__(self, idx):
image_path, grt_path = self.file_list[idx]
im, im_info, label = self.transforms(im=image_path, label=grt_path)
if self.mode == 'train':
return im, label
elif self.mode == 'eval':
return im, label
if self.mode == 'test':
return im, im_info, image_path
def __len__(self):
return len(self.file_list)
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from paddle.fluid.io import Dataset
class Dataset(Dataset):
def __init__(self,
data_dir,
num_classes,
train_list=None,
val_list=None,
test_list=None,
separator=' ',
transforms=None,
mode='train'):
self.data_dir = data_dir
self.transforms = transforms
self.file_list = list()
self.mode = mode
self.num_classes = num_classes
if mode.lower() not in ['train', 'eval', 'test']:
raise Exception(
"mode should be 'train', 'eval' or 'test', but got {}.".format(
mode))
if self.transforms is None:
raise Exception("transform is necessary, but it is None.")
self.data_dir = data_dir
if mode == 'train':
if train_list is None:
raise Exception(
'When mode is "train", train_list is need, but it is None.')
elif not os.path.exists(train_list):
raise Exception(
'train_list is not found: {}'.format(train_list))
else:
file_list = train_list
elif mode == 'eval':
if val_list is None:
raise Exception(
'When mode is "eval", val_list is need, but it is None.')
elif not os.path.exists(val_list):
raise Exception('val_list is not found: {}'.format(val_list))
else:
file_list = val_list
else:
if test_list is None:
raise Exception(
'When mode is "test", test_list is need, but it is None.')
elif not os.path.exists(test_list):
raise Exception('test_list is not found: {}'.format(test_list))
else:
file_list = test_list
with open(file_list, 'r') as f:
for line in f:
items = line.strip().split(separator)
if len(items) != 2:
if mode == 'train' or mode == 'eval':
raise Exception(
"File list format incorrect! It should be"
" image_name{}label_name\\n".format(separator))
image_path = os.path.join(self.data_dir, items[0])
grt_path = None
else:
image_path = os.path.join(self.data_dir, items[0])
grt_path = os.path.join(self.data_dir, items[1])
self.file_list.append([image_path, grt_path])
def __getitem__(self, idx):
image_path, grt_path = self.file_list[idx]
im, im_info, label = self.transforms(im=image_path, label=grt_path)
if self.mode == 'train':
return im, label
elif self.mode == 'eval':
return im, label
if self.mode == 'test':
return im, im_info, image_path
def __len__(self):
return len(self.file_list)
......@@ -14,8 +14,7 @@
import os
from paddle.fluid.io import Dataset
from .dataset import Dataset
from utils.download import download_file_and_uncompress
DATA_HOME = os.path.expanduser('~/.cache/paddle/dataset')
......@@ -70,16 +69,3 @@ class OpticDiscSeg(Dataset):
image_path = os.path.join(self.data_dir, items[0])
grt_path = os.path.join(self.data_dir, items[1])
self.file_list.append([image_path, grt_path])
def __getitem__(self, idx):
image_path, grt_path = self.file_list[idx]
im, im_info, label = self.transforms(im=image_path, label=grt_path)
if self.mode == 'train':
return im, label
elif self.mode == 'eval':
return im, label
if self.mode == 'test':
return im, im_info, image_path
def __len__(self):
return len(self.file_list)
......@@ -37,12 +37,8 @@ def parse_args():
parser.add_argument(
'--model_name',
dest='model_name',
help=
'Model type for testing, which is one of ("UNet", "HRNet_W18_Small_V1", "HRNet_W18_Small_V2", '
'"HRNet_W18", "HRNet_W30", "HRNet_W32", "HRNet_W40", "HRNet_W44", "HRNet_W48", '
'"HRNet_W60", "HRNet_W64", "SE_HRNet_W18_Small_V1", "SE_HRNet_W18_Small_V2", "SE_HRNet_W18", '
'"SE_HRNet_W30", "SE_HRNet_W32", "SE_HRNet_W40","SE_HRNet_W44", "SE_HRNet_W48", '
'"SE_HRNet_W60", "SE_HRNet_W64")',
help='Model type for testing, which is one of {}'.format(
str(list(MODELS.keys()))),
type=str,
default='UNet')
......
......@@ -18,7 +18,11 @@ import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, Linear
try:
from paddle.fluid.dygraph import SyncBatchNorm as BatchNorm
except:
from paddle.fluid.dygraph import BatchNorm
__all__ = [
"HRNet_W18_Small_V1", "HRNet_W18_Small_V2", "HRNet_W18", "HRNet_W30",
......
......@@ -13,7 +13,11 @@
# limitations under the License.
import paddle.fluid as fluid
from paddle.fluid.dygraph import Conv2D, BatchNorm, Pool2D
from paddle.fluid.dygraph import Conv2D, Pool2D
try:
from paddle.fluid.dygraph import SyncBatchNorm as BatchNorm
except:
from paddle.fluid.dygraph import BatchNorm
class UNet(fluid.dygraph.Layer):
......
......@@ -38,12 +38,8 @@ def parse_args():
parser.add_argument(
'--model_name',
dest='model_name',
help=
'Model type for training, which is one of ("UNet", "HRNet_W18_Small_V1", "HRNet_W18_Small_V2", '
'"HRNet_W18", "HRNet_W30", "HRNet_W32", "HRNet_W40", "HRNet_W44", "HRNet_W48", '
'"HRNet_W60", "HRNet_W64", "SE_HRNet_W18_Small_V1", "SE_HRNet_W18_Small_V2", "SE_HRNet_W18", '
'"SE_HRNet_W30", "SE_HRNet_W32", "SE_HRNet_W40","SE_HRNet_W44", "SE_HRNet_W48", '
'"SE_HRNet_W60", "SE_HRNet_W64")',
help='Model type for training, which is one of {}'.format(
str(list(MODELS.keys()))),
type=str,
default='UNet')
......@@ -186,6 +182,7 @@ def train(model,
total_steps = steps_per_epoch * (num_epochs - start_epoch)
num_steps = 0
best_mean_iou = -1.0
best_model_epoch = -1
for epoch in range(start_epoch, num_epochs):
for step, data in enumerate(loader):
images = data[0]
......@@ -245,9 +242,9 @@ def train(model,
best_model_dir = os.path.join(save_dir, "best_model")
fluid.save_dygraph(model.state_dict(),
os.path.join(best_model_dir, 'model'))
logging.info(
'Current evaluated best model in eval_dataset is epoch_{}, miou={:4f}'
.format(best_model_epoch, best_mean_iou))
logging.info(
'Current evaluated best model in eval_dataset is epoch_{}, miou={:4f}'
.format(best_model_epoch, best_mean_iou))
if use_vdl:
log_writer.add_scalar('Evaluate/mean_iou', mean_iou,
......
# coding: utf8
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
......
......@@ -52,7 +52,11 @@ def load_pretrained_model(model, pretrained_model):
logging.info('Load pretrained model from {}'.format(pretrained_model))
if os.path.exists(pretrained_model):
ckpt_path = os.path.join(pretrained_model, 'model')
para_state_dict, _ = fluid.load_dygraph(ckpt_path)
try:
para_state_dict, _ = fluid.load_dygraph(ckpt_path)
except:
para_state_dict = fluid.load_program_state(pretrained_model)
model_state_dict = model.state_dict()
keys = model_state_dict.keys()
num_params_loaded = 0
......
......@@ -39,12 +39,8 @@ def parse_args():
parser.add_argument(
'--model_name',
dest='model_name',
help=
'Model type for evaluation, which is one of ("UNet", "HRNet_W18_Small_V1", "HRNet_W18_Small_V2", '
'"HRNet_W18", "HRNet_W30", "HRNet_W32", "HRNet_W40", "HRNet_W44", "HRNet_W48", '
'"HRNet_W60", "HRNet_W64", "SE_HRNet_W18_Small_V1", "SE_HRNet_W18_Small_V2", "SE_HRNet_W18", '
'"SE_HRNet_W30", "SE_HRNet_W32", "SE_HRNet_W40","SE_HRNet_W44", "SE_HRNet_W48", '
'"SE_HRNet_W60", "SE_HRNet_W64")',
help='Model type for evaluation, which is one of {}'.format(
str(list(MODELS.keys()))),
type=str,
default='UNet')
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册