未验证 提交 d47b726c 编写于 作者: Z Zeyu Chen 提交者: GitHub

Update README.md

上级 0e1ba034
...@@ -6,7 +6,7 @@ ...@@ -6,7 +6,7 @@
## 简介 ## 简介
PaddleSeg是基于[PaddlePaddle](https://www.paddlepaddle.org.cn)开发的语义分割库,覆盖了DeepLabv3+, U-Net, ICNet三类主流的分割模型。通过统一的配置,帮助用户更便捷地完成从训练到部署的全流程图像分割应用。 PaddleSeg是基于[PaddlePaddle](https://www.paddlepaddle.org.cn)开发的语义分割库,覆盖了DeepLabv3+, U-Net, ICNet, PSPNet, HRNet等主流分割模型。通过统一的配置,帮助用户更便捷地完成从训练到部署的全流程图像分割应用。
PaddleSeg具备高性能、丰富的数据增强、工业级部署、全流程应用的特点: PaddleSeg具备高性能、丰富的数据增强、工业级部署、全流程应用的特点:
...@@ -17,7 +17,7 @@ PaddleSeg具备高性能、丰富的数据增强、工业级部署、全流程 ...@@ -17,7 +17,7 @@ PaddleSeg具备高性能、丰富的数据增强、工业级部署、全流程
- **模块化设计** - **模块化设计**
支持U-Net, DeepLabv3+, ICNet, PSPNet种主流分割网络,结合预训练模型和可调节的骨干网络,满足不同性能和精度的要求;选择不同的损失函数如Dice Loss, BCE Loss等方式可以强化小目标和不均衡样本场景下的分割精度。 支持U-Net, DeepLabv3+, ICNet, PSPNet, HRNet五种主流分割网络,结合预训练模型和可调节的骨干网络,满足不同性能和精度的要求;选择不同的损失函数如Dice Loss, BCE Loss等方式可以强化小目标和不均衡样本场景下的分割精度。
- **高性能** - **高性能**
...@@ -131,22 +131,30 @@ PaddleSeg在AI Studio平台上提供了在线体验的教程,欢迎体验: ...@@ -131,22 +131,30 @@ PaddleSeg在AI Studio平台上提供了在线体验的教程,欢迎体验:
<p align="center"> &#8194;&#8194;&#8194;微信公众号&#8194;&#8194;&#8194;&#8194;&#8194;&#8194;&#8194;&#8194;&#8194;&#8194;&#8194;&#8194;&#8194;&#8194;&#8194;&#8194;官方技术交流QQ群</p> <p align="center"> &#8194;&#8194;&#8194;微信公众号&#8194;&#8194;&#8194;&#8194;&#8194;&#8194;&#8194;&#8194;&#8194;&#8194;&#8194;&#8194;&#8194;&#8194;&#8194;&#8194;官方技术交流QQ群</p>
## 更新日志 ## 更新日志
* 2019.12.15
**`v0.3.0`**
* 新增HRNet分割网络,提供基于cityscapes数据集的[预训练模型](./docs/model_zoo.md)
* 新增图像归一化操作的GPU化功能,进一步提升预测速度。
* 新增Python部署方案,更低成本完成工业级部署。
* 新增Paddle-Lite移动端部署方案,支持人像分割模型的移动端部署。
* 2019.11.04 * 2019.11.04
**`v0.2.0`** **`v0.2.0`**
* 新增PSPNet分割网络,提供基于COCO和cityscapes数据集的[预训练模型](./docs/model_zoo.md)4个 * 新增PSPNet分割网络,提供基于COCO和cityscapes数据集的[预训练模型](./docs/model_zoo.md)4个
* 新增Dice Loss、BCE Loss以及组合Loss配置,支持样本不均衡场景下的[模型优化](./docs/loss_select.md) * 新增Dice Loss、BCE Loss以及组合Loss配置,支持样本不均衡场景下的[模型优化](./docs/loss_select.md)
* 支持[FP16混合精度训练](./docs/multiple_gpus_train_and_mixed_precision_train.md)以及动态Loss Scaling,在不损耗精度的情况下,训练速度提升30%+ * 支持[FP16混合精度训练](./docs/multiple_gpus_train_and_mixed_precision_train.md)以及动态Loss Scaling,在不损耗精度的情况下,训练速度提升30%+
* 支持[PaddlePaddle多卡多进程训练](./docs/multiple_gpus_train_and_mixed_precision_train.md),多卡训练时训练速度提升15%+ * 支持[PaddlePaddle多卡多进程训练](./docs/multiple_gpus_train_and_mixed_precision_train.md),多卡训练时训练速度提升15%+
* 发布基于UNet的[工业标记表盘分割模型](./contrib#%E5%B7%A5%E4%B8%9A%E7%94%A8%E8%A1%A8%E5%88%86%E5%89%B2) * 发布基于UNet的[工业标记表盘分割模型](./contrib#%E5%B7%A5%E4%B8%9A%E7%94%A8%E8%A1%A8%E5%88%86%E5%89%B2)
* 2019.09.10 * 2019.09.10
**`v0.1.0`** **`v0.1.0`**
* PaddleSeg分割库初始版本发布,包含DeepLabv3+, U-Net, ICNet三类分割模型, 其中DeepLabv3+支持Xception, MobileNet v2两种可调节的骨干网络。 * PaddleSeg分割库初始版本发布,包含DeepLabv3+, U-Net, ICNet三类分割模型, 其中DeepLabv3+支持Xception, MobileNet v2两种可调节的骨干网络。
* CVPR19 LIP人体部件分割比赛冠军预测模型发布[ACE2P](./contrib/ACE2P) * CVPR19 LIP人体部件分割比赛冠军预测模型发布[ACE2P](./contrib/ACE2P)
* 预置基于DeepLabv3+网络的[人像分割](./contrib/HumanSeg/)[车道线分割](./contrib/RoadLine)预测模型发布 * 预置基于DeepLabv3+网络的[人像分割](./contrib/HumanSeg/)[车道线分割](./contrib/RoadLine)预测模型发布
</br> </br>
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册