Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleSeg
提交
c619f4ee
P
PaddleSeg
项目概览
PaddlePaddle
/
PaddleSeg
通知
285
Star
8
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
53
列表
看板
标记
里程碑
合并请求
3
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleSeg
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
53
Issue
53
列表
看板
标记
里程碑
合并请求
3
合并请求
3
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
c619f4ee
编写于
8月 28, 2020
作者:
M
michaelowenliu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add FastSCNN
上级
f85f1b0f
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
348 addition
and
11 deletion
+348
-11
dygraph/models/__init__.py
dygraph/models/__init__.py
+1
-0
dygraph/models/fast_scnn.py
dygraph/models/fast_scnn.py
+302
-0
dygraph/models/model_utils.py
dygraph/models/model_utils.py
+30
-2
dygraph/models/pspnet.py
dygraph/models/pspnet.py
+15
-9
未找到文件。
dygraph/models/__init__.py
浏览文件 @
c619f4ee
...
...
@@ -17,3 +17,4 @@ from .unet import UNet
from
.deeplab
import
*
from
.fcn
import
*
from
.pspnet
import
*
from
.fast_scnn
import
*
dygraph/models/fast_scnn.py
0 → 100644
浏览文件 @
c619f4ee
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
paddle
import
fluid
,
nn
from
dygraph.cvlibs
import
manager
from
dygraph.models
import
model_utils
,
pspnet
from
dygraph.models.architectures
import
layer_utils
@
manager
.
MODELS
.
add_component
class
FastSCNN
(
fluid
.
dygraph
.
Layer
):
"""
The FastSCNN implementation.
As mentioned in original paper, FastSCNN is a real-time segmentation algorithm (123.5fps)
even for high resolution images (1024x2048).
The orginal artile refers to
Poudel, Rudra PK, et al. "Fast-scnn: Fast semantic segmentation network."
(https://arxiv.org/pdf/1902.04502.pdf)
Args:
num_classes (int): the unique number of target classes. Default to 2.
enable_auxiliary_loss (bool): a bool values indictes whether adding auxiliary loss.
if true, auxiliary loss will be added after LearningToDownsample module, where the weight is 0.4. Default to False.
ignore_index (int): the value of ground-truth mask would be ignored while doing evaluation. Default to 255.
"""
def
__init__
(
self
,
num_classes
=
2
,
enable_auxiliary_loss
=
False
,
ignore_index
=
255
):
super
(
FastSCNN
,
self
).
__init__
()
self
.
learning_to_downsample
=
LearningToDownsample
(
32
,
48
,
64
)
self
.
global_feature_extractor
=
GlobalFeatureExtractor
(
64
,
[
64
,
96
,
128
],
128
,
6
,
[
3
,
3
,
3
])
self
.
feature_fusion
=
FeatureFusionModule
(
64
,
128
,
128
)
self
.
classifier
=
Classifier
(
128
,
num_classes
)
if
enable_auxiliary_loss
:
self
.
auxlayer
=
model_utils
.
AuxLayer
(
64
,
32
,
num_classes
)
self
.
enable_auxiliary_loss
=
enable_auxiliary_loss
self
.
ignore_index
=
ignore_index
def
forward
(
self
,
input
,
label
=
None
):
higher_res_features
=
self
.
learning_to_downsample
(
input
)
x
=
self
.
global_feature_extractor
(
higher_res_features
)
x
=
self
.
feature_fusion
(
higher_res_features
,
x
)
logit
=
self
.
classifier
(
x
)
logit
=
fluid
.
layers
.
resize_bilinear
(
logit
,
input
.
shape
[
2
:])
if
self
.
enable_auxiliary_loss
:
auxiliary_logit
=
self
.
auxlayer
(
higher_res_features
)
auxiliary_logit
=
fluid
.
layers
.
resize_bilinear
(
auxiliary_logit
,
input
.
shape
[
2
:])
if
self
.
training
:
loss
=
model_utils
.
get_loss
(
logit
,
label
)
if
self
.
enable_auxiliary_loss
:
auxiliary_loss
=
model_utils
.
get_loss
(
auxiliary_logit
,
label
)
loss
+=
(
0.4
*
auxiliary_loss
)
return
loss
else
:
pred
,
score_map
=
model_utils
.
get_pred_score_map
(
logit
)
return
pred
,
score_map
class
LearningToDownsample
(
fluid
.
dygraph
.
Layer
):
"""
Learning to downsample module.
This module consists of three downsampling blocks (one Conv and two separable Conv)
Args:
dw_channels1 (int): the input channels of the first sep conv. Default to 32.
dw_channels2 (int): the input channels of the second sep conv. Default to 48.
out_channels (int): the output channels of LearningToDownsample module. Default to 64.
"""
def
__init__
(
self
,
dw_channels1
=
32
,
dw_channels2
=
48
,
out_channels
=
64
):
super
(
LearningToDownsample
,
self
).
__init__
()
self
.
conv_bn_relu
=
layer_utils
.
ConvBnRelu
(
num_channels
=
3
,
num_filters
=
dw_channels1
,
filter_size
=
3
,
stride
=
2
)
self
.
dsconv_bn_relu1
=
layer_utils
.
ConvBnRelu
(
num_channels
=
dw_channels1
,
num_filters
=
dw_channels2
,
filter_size
=
3
,
using_sep_conv
=
True
,
# using sep conv
stride
=
2
,
padding
=
1
)
self
.
dsconv_bn_relu2
=
layer_utils
.
ConvBnRelu
(
num_channels
=
dw_channels2
,
num_filters
=
out_channels
,
filter_size
=
3
,
using_sep_conv
=
True
,
# using sep conv
stride
=
2
,
padding
=
1
)
def
forward
(
self
,
x
):
x
=
self
.
conv_bn_relu
(
x
)
x
=
self
.
dsconv_bn_relu1
(
x
)
x
=
self
.
dsconv_bn_relu2
(
x
)
return
x
class
GlobalFeatureExtractor
(
fluid
.
dygraph
.
Layer
):
"""
Global feature extractor module
This module consists of three LinearBottleneck blocks (like inverted residual introduced by MobileNetV2) and
a PPModule (introduced by PSPNet).
Args:
in_channels (int): the number of input channels to the module. Default to 64.
block_channels (tuple): a tuple represents output channels of each bottleneck block. Default to (64, 96, 128).
out_channels (int): the number of output channels of the module. Default to 128.
expansion (int): the expansion factor in bottleneck. Default to 6.
num_blocks (tuple): it indicates the repeat time of each bottleneck. Default to (3, 3, 3).
"""
def
__init__
(
self
,
in_channels
=
64
,
block_channels
=
(
64
,
96
,
128
),
out_channels
=
128
,
expansion
=
6
,
num_blocks
=
(
3
,
3
,
3
)):
super
(
GlobalFeatureExtractor
,
self
).
__init__
()
self
.
bottleneck1
=
self
.
_make_layer
(
LinearBottleneck
,
in_channels
,
block_channels
[
0
],
num_blocks
[
0
],
expansion
,
2
)
self
.
bottleneck2
=
self
.
_make_layer
(
LinearBottleneck
,
block_channels
[
0
],
block_channels
[
1
],
num_blocks
[
1
],
expansion
,
2
)
self
.
bottleneck3
=
self
.
_make_layer
(
LinearBottleneck
,
block_channels
[
1
],
block_channels
[
2
],
num_blocks
[
2
],
expansion
,
1
)
self
.
ppm
=
pspnet
.
PPModule
(
block_channels
[
2
],
out_channels
,
dim_reduction
=
True
)
def
_make_layer
(
self
,
block
,
in_channels
,
out_channels
,
blocks
,
expansion
=
6
,
stride
=
1
):
layers
=
[]
layers
.
append
(
block
(
in_channels
,
out_channels
,
expansion
,
stride
))
for
i
in
range
(
1
,
blocks
):
layers
.
append
(
block
(
out_channels
,
out_channels
,
expansion
,
1
))
return
nn
.
Sequential
(
*
layers
)
def
forward
(
self
,
x
):
x
=
self
.
bottleneck1
(
x
)
x
=
self
.
bottleneck2
(
x
)
x
=
self
.
bottleneck3
(
x
)
x
=
self
.
ppm
(
x
)
return
x
class
LinearBottleneck
(
fluid
.
dygraph
.
Layer
):
"""
Single bottleneck implementation.
Args:
in_channels (int): the number of input channels to bottleneck block.
out_channels (int): the number of output channels of bottleneck block.
expansion (int). the expansion factor in bottleneck. Default to 6.
stride (int). the stride used in depth-wise conv.
"""
def
__init__
(
self
,
in_channels
,
out_channels
,
expansion
=
6
,
stride
=
2
,
**
kwargs
):
super
(
LinearBottleneck
,
self
).
__init__
()
self
.
use_shortcut
=
stride
==
1
and
in_channels
==
out_channels
expand_channels
=
in_channels
*
expansion
self
.
block
=
nn
.
Sequential
(
# pw
layer_utils
.
ConvBnRelu
(
num_channels
=
in_channels
,
num_filters
=
expand_channels
,
filter_size
=
1
,
bias_attr
=
False
),
# dw
layer_utils
.
ConvBnRelu
(
num_channels
=
expand_channels
,
num_filters
=
expand_channels
,
filter_size
=
3
,
stride
=
stride
,
padding
=
1
,
groups
=
expand_channels
,
bias_attr
=
False
),
# pw-linear
nn
.
Conv2D
(
num_channels
=
expand_channels
,
num_filters
=
out_channels
,
filter_size
=
1
,
bias_attr
=
False
),
nn
.
BatchNorm
(
out_channels
)
)
def
forward
(
self
,
x
):
out
=
self
.
block
(
x
)
if
self
.
use_shortcut
:
out
=
x
+
out
return
out
class
FeatureFusionModule
(
fluid
.
dygraph
.
Layer
):
"""
Feature Fusion Module Implememtation.
This module fuses high-resolution feature and low-resolution feature.
Args:
high_in_channels (int): the channels of high-resolution feature (output of LearningToDownsample).
low_in_channels (int). the channels of low-resolution feature (output of GlobalFeatureExtractor).
out_channels (int). the output channels of this module.
"""
def
__init__
(
self
,
high_in_channels
,
low_in_channels
,
out_channels
):
super
(
FeatureFusionModule
,
self
).
__init__
()
# There only depth-wise conv is used WITHOUT point-sied conv
self
.
dwconv
=
layer_utils
.
ConvBnRelu
(
num_channels
=
low_in_channels
,
num_filters
=
out_channels
,
filter_size
=
3
,
padding
=
1
,
groups
=
128
)
self
.
conv_low_res
=
nn
.
Sequential
(
nn
.
Conv2D
(
num_channels
=
out_channels
,
num_filters
=
out_channels
,
filter_size
=
1
),
nn
.
BatchNorm
(
out_channels
))
self
.
conv_high_res
=
nn
.
Sequential
(
nn
.
Conv2D
(
num_channels
=
high_in_channels
,
num_filters
=
out_channels
,
filter_size
=
1
),
nn
.
BatchNorm
(
out_channels
))
self
.
relu
=
nn
.
ReLU
(
True
)
def
forward
(
self
,
high_res_input
,
low_res_input
):
low_res_input
=
fluid
.
layers
.
resize_bilinear
(
input
=
low_res_input
,
scale
=
4
)
low_res_input
=
self
.
dwconv
(
low_res_input
)
low_res_input
=
self
.
conv_low_res
(
low_res_input
)
high_res_input
=
self
.
conv_high_res
(
high_res_input
)
x
=
high_res_input
+
low_res_input
return
self
.
relu
(
x
)
class
Classifier
(
fluid
.
dygraph
.
Layer
):
"""
The Classifier module implemetation.
This module consists of two depth-wsie conv and one conv.
Args:
input_channels (int): the input channels to this module.
num_classes (int). the unique number of target classes.
"""
def
__init__
(
self
,
input_channels
,
num_classes
):
super
(
Classifier
,
self
).
__init__
()
self
.
dsconv1
=
layer_utils
.
ConvBnRelu
(
num_channels
=
input_channels
,
num_filters
=
input_channels
,
filter_size
=
3
,
using_sep_conv
=
True
# using sep conv
)
self
.
dsconv2
=
layer_utils
.
ConvBnRelu
(
num_channels
=
input_channels
,
num_filters
=
input_channels
,
filter_size
=
3
,
using_sep_conv
=
True
# using sep conv
)
self
.
conv
=
nn
.
Conv2D
(
num_channels
=
input_channels
,
num_filters
=
num_classes
,
filter_size
=
1
)
def
forward
(
self
,
x
):
x
=
self
.
dsconv1
(
x
)
x
=
self
.
dsconv2
(
x
)
x
=
fluid
.
layers
.
dropout
(
x
,
dropout_prob
=
0.1
)
x
=
self
.
conv
(
x
)
return
x
dygraph/models/model_utils.py
浏览文件 @
c619f4ee
...
...
@@ -18,7 +18,8 @@ import paddle.nn.functional as F
from
paddle
import
fluid
from
paddle.fluid
import
dygraph
from
paddle.fluid.dygraph
import
Conv2D
from
paddle.nn
import
SyncBatchNorm
as
BatchNorm
#from paddle.nn import SyncBatchNorm as BatchNorm
from
paddle.fluid.dygraph
import
SyncBatchNorm
as
BatchNorm
from
dygraph.models.architectures
import
layer_utils
...
...
@@ -47,10 +48,37 @@ class FCNHead(fluid.dygraph.Layer):
def
forward
(
self
,
x
):
x
=
self
.
conv_bn_relu
(
x
)
x
=
F
.
dropout
(
x
,
p
=
0.1
)
x
=
F
.
dropout
(
x
,
dropout_prob
=
0.1
)
x
=
self
.
conv
(
x
)
return
x
class
AuxLayer
(
fluid
.
dygraph
.
Layer
):
"""
The auxilary layer implementation for auxilary loss
Args:
in_channels (int): the number of input channels.
inter_channels (int): intermediate channels.
out_channels (int): the number of output channels, which is usually num_classes.
"""
def
__init__
(
self
,
in_channels
,
inter_channels
,
out_channels
):
super
(
AuxLayer
,
self
).
__init__
()
self
.
conv_bn_relu
=
layer_utils
.
ConvBnRelu
(
num_channels
=
in_channels
,
num_filters
=
inter_channels
,
filter_size
=
3
,
padding
=
1
)
self
.
conv
=
Conv2D
(
num_channels
=
inter_channels
,
num_filters
=
out_channels
,
filter_size
=
1
)
def
forward
(
self
,
x
):
x
=
self
.
conv_bn_relu
(
x
)
x
=
F
.
dropout
(
x
,
dropout_prob
=
0.1
)
x
=
self
.
conv
(
x
)
return
x
def
get_loss
(
logit
,
label
,
ignore_index
=
255
,
EPS
=
1e-5
):
"""
...
...
dygraph/models/pspnet.py
浏览文件 @
c619f4ee
...
...
@@ -144,21 +144,27 @@ class PPModule(fluid.dygraph.Layer):
out_channels (int): the number of output channels after pyramid pooling module.
bin_sizes (tuple): the out size of pooled feature maps. Default to (1,2,3,6).
dim_reduction (bool): a bool value represent if reduing dimention after pooling. Default to True.
"""
def
__init__
(
self
,
in_channels
,
out_channels
,
bin_sizes
=
(
1
,
2
,
3
,
6
)):
def
__init__
(
self
,
in_channels
,
out_channels
,
bin_sizes
=
(
1
,
2
,
3
,
6
)
,
dim_reduction
=
True
):
super
(
PPModule
,
self
).
__init__
()
self
.
bin_sizes
=
bin_sizes
inter_channels
=
in_channels
if
dim_reduction
:
inter_channels
=
in_channels
//
len
(
bin_sizes
)
# we use dimension reduction after pooling mentioned in original implementation.
self
.
stages
=
fluid
.
dygraph
.
LayerList
([
self
.
_make_stage
(
in_channels
,
size
)
for
size
in
bin_sizes
])
self
.
stages
=
fluid
.
dygraph
.
LayerList
([
self
.
_make_stage
(
in_channels
,
inter_channels
,
size
)
for
size
in
bin_sizes
])
self
.
conv_bn_relu2
=
layer_utils
.
ConvBnRelu
(
num_channels
=
in_channels
*
2
,
self
.
conv_bn_relu2
=
layer_utils
.
ConvBnRelu
(
num_channels
=
in_channels
+
inter_channels
*
len
(
bin_sizes
)
,
num_filters
=
out_channels
,
filter_size
=
3
,
padding
=
1
)
def
_make_stage
(
self
,
in_channels
,
size
):
def
_make_stage
(
self
,
in_channels
,
out_channels
,
size
):
"""
Create one pooling layer.
...
...
@@ -181,7 +187,7 @@ class PPModule(fluid.dygraph.Layer):
# this paddle version does not support AdaptiveAvgPool2d, so skip it here.
# prior = nn.AdaptiveAvgPool2d(output_size=(size, size))
conv
=
layer_utils
.
ConvBnRelu
(
num_channels
=
in_channels
,
num_filters
=
in_channels
//
len
(
self
.
bin_sizes
)
,
num_filters
=
out_channels
,
filter_size
=
1
)
return
conv
...
...
@@ -203,23 +209,23 @@ class PPModule(fluid.dygraph.Layer):
@
manager
.
MODELS
.
add_component
def
pspnet_resnet101_vd
(
*
args
,
**
kwargs
):
pretrained_model
=
None
pretrained_model
=
"/mnt/liuyi22/PaddlePaddle/PaddleClas/pretrained/resnet101_vd_ssld_imagenet"
return
PSPNet
(
backbone
=
'ResNet101_vd'
,
pretrained_model
=
pretrained_model
,
**
kwargs
)
@
manager
.
MODELS
.
add_component
def
pspnet_resnet101_vd_os8
(
*
args
,
**
kwargs
):
pretrained_model
=
None
pretrained_model
=
"/mnt/liuyi22/PaddlePaddle/PaddleClas/pretrained/resnet101_vd_ssld_imagenet"
return
PSPNet
(
backbone
=
'ResNet101_vd'
,
output_stride
=
8
,
pretrained_model
=
pretrained_model
,
**
kwargs
)
@
manager
.
MODELS
.
add_component
def
pspnet_resnet50_vd
(
*
args
,
**
kwargs
):
pretrained_model
=
None
pretrained_model
=
"/mnt/liuyi22/PaddlePaddle/PaddleClas/pretrained/resnet50_vd_ssld_v2_imagenet"
return
PSPNet
(
backbone
=
'ResNet50_vd'
,
pretrained_model
=
pretrained_model
,
**
kwargs
)
@
manager
.
MODELS
.
add_component
def
pspnet_resnet50_vd_os8
(
*
args
,
**
kwargs
):
pretrained_model
=
None
pretrained_model
=
"/mnt/liuyi22/PaddlePaddle/PaddleClas/pretrained/resnet50_vd_ssld_v2_imagenet"
return
PSPNet
(
backbone
=
'ResNet50_vd'
,
output_stride
=
8
,
pretrained_model
=
pretrained_model
,
**
kwargs
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录