Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleSeg
提交
ae1a4aa1
P
PaddleSeg
项目概览
PaddlePaddle
/
PaddleSeg
通知
285
Star
8
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
53
列表
看板
标记
里程碑
合并请求
3
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleSeg
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
53
Issue
53
列表
看板
标记
里程碑
合并请求
3
合并请求
3
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
ae1a4aa1
编写于
7月 15, 2020
作者:
T
tianlanshidai
提交者:
GitHub
7月 15, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Create ocnet.py
上级
ced3ee0e
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
309 addition
and
0 deletion
+309
-0
pdseg/models/modeling/ocnet.py
pdseg/models/modeling/ocnet.py
+309
-0
未找到文件。
pdseg/models/modeling/ocnet.py
0 → 100644
浏览文件 @
ae1a4aa1
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.initializer
import
MSRA
from
paddle.fluid.param_attr
import
ParamAttr
from
utils.config
import
cfg
def
conv_bn_layer
(
input
,
filter_size
,
num_filters
,
stride
=
1
,
padding
=
1
,
num_groups
=
1
,
if_act
=
True
,
name
=
None
):
conv
=
fluid
.
layers
.
conv2d
(
input
=
input
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
(
filter_size
-
1
)
//
2
,
groups
=
num_groups
,
act
=
None
,
# param_attr=ParamAttr(initializer=MSRA(), learning_rate=1.0, name=name + '_weights'),
param_attr
=
ParamAttr
(
initializer
=
fluid
.
initializer
.
Normal
(
scale
=
0.001
),
learning_rate
=
1.0
,
name
=
name
+
'_weights'
),
bias_attr
=
False
)
bn_name
=
name
+
'_bn'
bn
=
fluid
.
layers
.
batch_norm
(
input
=
conv
,
param_attr
=
ParamAttr
(
name
=
bn_name
+
"_scale"
,
initializer
=
fluid
.
initializer
.
Constant
(
1.0
)),
bias_attr
=
ParamAttr
(
name
=
bn_name
+
"_offset"
,
initializer
=
fluid
.
initializer
.
Constant
(
0.0
)),
moving_mean_name
=
bn_name
+
'_mean'
,
moving_variance_name
=
bn_name
+
'_variance'
)
if
if_act
:
bn
=
fluid
.
layers
.
relu
(
bn
)
return
bn
def
basic_block
(
input
,
num_filters
,
stride
=
1
,
downsample
=
False
,
name
=
None
):
residual
=
input
conv
=
conv_bn_layer
(
input
=
input
,
filter_size
=
3
,
num_filters
=
num_filters
,
stride
=
stride
,
name
=
name
+
'_conv1'
)
conv
=
conv_bn_layer
(
input
=
conv
,
filter_size
=
3
,
num_filters
=
num_filters
,
if_act
=
False
,
name
=
name
+
'_conv2'
)
if
downsample
:
residual
=
conv_bn_layer
(
input
=
input
,
filter_size
=
1
,
num_filters
=
num_filters
,
if_act
=
False
,
name
=
name
+
'_downsample'
)
return
fluid
.
layers
.
elementwise_add
(
x
=
residual
,
y
=
conv
,
act
=
'relu'
)
def
bottleneck_block
(
input
,
num_filters
,
stride
=
1
,
downsample
=
False
,
name
=
None
):
residual
=
input
conv
=
conv_bn_layer
(
input
=
input
,
filter_size
=
1
,
num_filters
=
num_filters
,
name
=
name
+
'_conv1'
)
conv
=
conv_bn_layer
(
input
=
conv
,
filter_size
=
3
,
num_filters
=
num_filters
,
stride
=
stride
,
name
=
name
+
'_conv2'
)
conv
=
conv_bn_layer
(
input
=
conv
,
filter_size
=
1
,
num_filters
=
num_filters
*
4
,
if_act
=
False
,
name
=
name
+
'_conv3'
)
if
downsample
:
residual
=
conv_bn_layer
(
input
=
input
,
filter_size
=
1
,
num_filters
=
num_filters
*
4
,
if_act
=
False
,
name
=
name
+
'_downsample'
)
return
fluid
.
layers
.
elementwise_add
(
x
=
residual
,
y
=
conv
,
act
=
'relu'
)
def
fuse_layers
(
x
,
channels
,
multi_scale_output
=
True
,
name
=
None
):
out
=
[]
for
i
in
range
(
len
(
channels
)
if
multi_scale_output
else
1
):
residual
=
x
[
i
]
shape
=
residual
.
shape
width
=
shape
[
-
1
]
height
=
shape
[
-
2
]
for
j
in
range
(
len
(
channels
)):
if
j
>
i
:
y
=
conv_bn_layer
(
x
[
j
],
filter_size
=
1
,
num_filters
=
channels
[
i
],
if_act
=
False
,
name
=
name
+
'_layer_'
+
str
(
i
+
1
)
+
'_'
+
str
(
j
+
1
))
y
=
fluid
.
layers
.
resize_bilinear
(
input
=
y
,
out_shape
=
[
height
,
width
])
residual
=
fluid
.
layers
.
elementwise_add
(
x
=
residual
,
y
=
y
,
act
=
None
)
elif
j
<
i
:
y
=
x
[
j
]
for
k
in
range
(
i
-
j
):
if
k
==
i
-
j
-
1
:
y
=
conv_bn_layer
(
y
,
filter_size
=
3
,
num_filters
=
channels
[
i
],
stride
=
2
,
if_act
=
False
,
name
=
name
+
'_layer_'
+
str
(
i
+
1
)
+
'_'
+
str
(
j
+
1
)
+
'_'
+
str
(
k
+
1
))
else
:
y
=
conv_bn_layer
(
y
,
filter_size
=
3
,
num_filters
=
channels
[
j
],
stride
=
2
,
name
=
name
+
'_layer_'
+
str
(
i
+
1
)
+
'_'
+
str
(
j
+
1
)
+
'_'
+
str
(
k
+
1
))
residual
=
fluid
.
layers
.
elementwise_add
(
x
=
residual
,
y
=
y
,
act
=
None
)
residual
=
fluid
.
layers
.
relu
(
residual
)
out
.
append
(
residual
)
return
out
def
branches
(
x
,
block_num
,
channels
,
name
=
None
):
out
=
[]
for
i
in
range
(
len
(
channels
)):
residual
=
x
[
i
]
for
j
in
range
(
block_num
):
residual
=
basic_block
(
residual
,
channels
[
i
],
name
=
name
+
'_branch_layer_'
+
str
(
i
+
1
)
+
'_'
+
str
(
j
+
1
))
out
.
append
(
residual
)
return
out
def
high_resolution_module
(
x
,
channels
,
multi_scale_output
=
True
,
name
=
None
):
residual
=
branches
(
x
,
4
,
channels
,
name
=
name
)
out
=
fuse_layers
(
residual
,
channels
,
multi_scale_output
=
multi_scale_output
,
name
=
name
)
return
out
def
transition_layer
(
x
,
in_channels
,
out_channels
,
name
=
None
):
num_in
=
len
(
in_channels
)
num_out
=
len
(
out_channels
)
out
=
[]
for
i
in
range
(
num_out
):
if
i
<
num_in
:
if
in_channels
[
i
]
!=
out_channels
[
i
]:
residual
=
conv_bn_layer
(
x
[
i
],
filter_size
=
3
,
num_filters
=
out_channels
[
i
],
name
=
name
+
'_layer_'
+
str
(
i
+
1
))
out
.
append
(
residual
)
else
:
out
.
append
(
x
[
i
])
else
:
residual
=
conv_bn_layer
(
x
[
-
1
],
filter_size
=
3
,
num_filters
=
out_channels
[
i
],
stride
=
2
,
name
=
name
+
'_layer_'
+
str
(
i
+
1
))
out
.
append
(
residual
)
return
out
def
stage
(
x
,
num_modules
,
channels
,
multi_scale_output
=
True
,
name
=
None
):
out
=
x
for
i
in
range
(
num_modules
):
if
i
==
num_modules
-
1
and
multi_scale_output
==
False
:
out
=
high_resolution_module
(
out
,
channels
,
multi_scale_output
=
False
,
name
=
name
+
'_'
+
str
(
i
+
1
))
else
:
out
=
high_resolution_module
(
out
,
channels
,
name
=
name
+
'_'
+
str
(
i
+
1
))
return
out
def
layer1
(
input
,
name
=
None
):
conv
=
input
for
i
in
range
(
4
):
conv
=
bottleneck_block
(
conv
,
num_filters
=
64
,
downsample
=
True
if
i
==
0
else
False
,
name
=
name
+
'_'
+
str
(
i
+
1
))
return
conv
def
aux_head
(
input
,
last_inp_channels
,
num_classes
):
x
=
conv_bn_layer
(
input
=
input
,
filter_size
=
1
,
num_filters
=
last_inp_channels
,
stride
=
1
,
padding
=
0
,
name
=
'aux_head_conv1'
)
x
=
fluid
.
layers
.
conv2d
(
input
=
x
,
num_filters
=
num_classes
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
,
act
=
None
,
# param_attr=ParamAttr(initializer=MSRA(), learning_rate=1.0, name='aux_head_conv2_weights'),
param_attr
=
ParamAttr
(
initializer
=
fluid
.
initializer
.
Normal
(
scale
=
0.001
),
learning_rate
=
1.0
,
name
=
'aux_head_conv2_weights'
),
bias_attr
=
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
0.0
),
name
=
"aux_head_conv2_bias"
)
)
return
x
def
conv3x3_ocr
(
input
,
ocr_mid_channels
):
x
=
conv_bn_layer
(
input
=
input
,
filter_size
=
3
,
num_filters
=
ocr_mid_channels
,
stride
=
1
,
padding
=
1
,
name
=
'conv3x3_ocr'
)
return
x
def
f_pixel
(
input
,
key_channels
):
x
=
conv_bn_layer
(
input
=
input
,
filter_size
=
1
,
num_filters
=
key_channels
,
stride
=
1
,
padding
=
0
,
name
=
'f_pixel_conv1'
)
x
=
conv_bn_layer
(
input
=
x
,
filter_size
=
1
,
num_filters
=
key_channels
,
stride
=
1
,
padding
=
0
,
name
=
'f_pixel_conv2'
)
return
x
def
f_object
(
input
,
key_channels
):
x
=
conv_bn_layer
(
input
=
input
,
filter_size
=
1
,
num_filters
=
key_channels
,
stride
=
1
,
padding
=
0
,
name
=
'f_object_conv1'
)
x
=
conv_bn_layer
(
input
=
x
,
filter_size
=
1
,
num_filters
=
key_channels
,
stride
=
1
,
padding
=
0
,
name
=
'f_object_conv2'
)
return
x
def
f_down
(
input
,
key_channels
):
x
=
conv_bn_layer
(
input
=
input
,
filter_size
=
1
,
num_filters
=
key_channels
,
stride
=
1
,
padding
=
0
,
name
=
'f_down_conv'
)
return
x
def
f_up
(
input
,
in_channels
):
x
=
conv_bn_layer
(
input
=
input
,
filter_size
=
1
,
num_filters
=
in_channels
,
stride
=
1
,
padding
=
0
,
name
=
'f_up_conv'
)
return
x
def
object_context_block
(
x
,
proxy
,
in_channels
,
key_channels
,
scale
):
batch_size
,
_
,
h
,
w
=
x
.
shape
if
scale
>
1
:
x
=
fluid
.
layers
.
pool2d
(
x
,
pool_size
=
[
scale
,
scale
],
pool_type
=
'max'
)
query
=
f_pixel
(
x
,
key_channels
)
query
=
fluid
.
layers
.
reshape
(
query
,
shape
=
[
batch_size
,
key_channels
,
query
.
shape
[
2
]
*
query
.
shape
[
3
]])
query
=
fluid
.
layers
.
transpose
(
query
,
perm
=
[
0
,
2
,
1
])
key
=
f_object
(
proxy
,
key_channels
)
key
=
fluid
.
layers
.
reshape
(
key
,
shape
=
[
batch_size
,
key_channels
,
key
.
shape
[
2
]
*
key
.
shape
[
3
]])
value
=
f_down
(
proxy
,
key_channels
)
value
=
fluid
.
layers
.
reshape
(
value
,
shape
=
[
batch_size
,
key_channels
,
value
.
shape
[
2
]
*
value
.
shape
[
3
]])
value
=
fluid
.
layers
.
transpose
(
value
,
perm
=
[
0
,
2
,
1
])
sim_map
=
fluid
.
layers
.
matmul
(
query
,
key
)
sim_map
=
(
key_channels
**-
.
5
)
*
sim_map
sim_map
=
fluid
.
layers
.
softmax
(
sim_map
,
axis
=-
1
)
context
=
fluid
.
layers
.
matmul
(
sim_map
,
value
)
context
=
fluid
.
layers
.
transpose
(
context
,
perm
=
[
0
,
2
,
1
])
context
=
fluid
.
layers
.
reshape
(
context
,
shape
=
[
batch_size
,
key_channels
,
x
.
shape
[
2
],
x
.
shape
[
3
]])
context
=
f_up
(
context
,
in_channels
)
if
scale
>
1
:
context
=
fluid
.
layers
.
resize_bilinear
(
context
,
out_shape
=
[
h
,
w
])
return
context
def
ocr_gather_head
(
feats
,
probs
,
scale
=
1
):
feats
=
fluid
.
layers
.
reshape
(
feats
,
shape
=
[
feats
.
shape
[
0
],
feats
.
shape
[
1
],
feats
.
shape
[
2
]
*
feats
.
shape
[
3
]])
feats
=
fluid
.
layers
.
transpose
(
feats
,
perm
=
[
0
,
2
,
1
])
probs
=
fluid
.
layers
.
reshape
(
probs
,
shape
=
[
probs
.
shape
[
0
],
probs
.
shape
[
1
],
probs
.
shape
[
2
]
*
probs
.
shape
[
3
]])
probs
=
fluid
.
layers
.
softmax
(
scale
*
probs
,
axis
=
2
)
ocr_context
=
fluid
.
layers
.
matmul
(
probs
,
feats
)
ocr_context
=
fluid
.
layers
.
transpose
(
ocr_context
,
perm
=
[
0
,
2
,
1
])
ocr_context
=
fluid
.
layers
.
unsqueeze
(
ocr_context
,
axes
=
[
3
])
return
ocr_context
def
ocr_distri_head
(
feats
,
proxy_feats
,
ocr_mid_channels
,
ocr_key_channels
,
scale
=
1
,
dropout
=
0.05
):
context
=
object_context_block
(
feats
,
proxy_feats
,
ocr_mid_channels
,
ocr_key_channels
,
scale
)
x
=
fluid
.
layers
.
concat
([
context
,
feats
],
axis
=
1
)
x
=
conv_bn_layer
(
input
=
x
,
filter_size
=
1
,
num_filters
=
ocr_mid_channels
,
stride
=
1
,
padding
=
0
,
name
=
'spatial_ocr_conv'
)
x
=
fluid
.
layers
.
dropout
(
x
,
dropout_prob
=
dropout
)
return
x
def
cls_head
(
input
,
num_classes
):
x
=
fluid
.
layers
.
conv2d
(
input
=
input
,
num_filters
=
num_classes
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
,
act
=
None
,
# param_attr=ParamAttr(initializer=MSRA(), learning_rate=1.0, name='cls_head_conv_weights'),
param_attr
=
ParamAttr
(
initializer
=
fluid
.
initializer
.
Normal
(
scale
=
0.001
),
learning_rate
=
1.0
,
name
=
'cls_head_conv_weights'
),
bias_attr
=
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
(
0.0
),
name
=
"cls_head_conv_bias"
)
)
return
x
def
ocr_module
(
input
,
last_inp_channels
,
num_classes
,
ocr_mid_channels
,
ocr_key_channels
):
out_aux
=
aux_head
(
input
,
last_inp_channels
,
num_classes
)
feats
=
conv3x3_ocr
(
input
,
ocr_mid_channels
)
context
=
ocr_gather_head
(
feats
,
out_aux
)
feats
=
ocr_distri_head
(
feats
,
context
,
ocr_mid_channels
,
ocr_key_channels
)
out
=
cls_head
(
feats
,
num_classes
)
return
out
,
out_aux
def
high_resolution_ocr_net
(
input
,
num_classes
):
channels_2
=
cfg
.
MODEL
.
HRNET
.
STAGE2
.
NUM_CHANNELS
channels_3
=
cfg
.
MODEL
.
HRNET
.
STAGE3
.
NUM_CHANNELS
channels_4
=
cfg
.
MODEL
.
HRNET
.
STAGE4
.
NUM_CHANNELS
num_modules_2
=
cfg
.
MODEL
.
HRNET
.
STAGE2
.
NUM_MODULES
num_modules_3
=
cfg
.
MODEL
.
HRNET
.
STAGE3
.
NUM_MODULES
num_modules_4
=
cfg
.
MODEL
.
HRNET
.
STAGE4
.
NUM_MODULES
ocr_mid_channels
=
cfg
.
MODEL
.
OCR
.
OCR_MID_CHANNELS
ocr_key_channels
=
cfg
.
MODEL
.
OCR
.
OCR_KEY_CHANNELS
last_inp_channels
=
sum
(
channels_4
)
x
=
conv_bn_layer
(
input
=
input
,
filter_size
=
3
,
num_filters
=
64
,
stride
=
2
,
if_act
=
True
,
name
=
'layer1_1'
)
x
=
conv_bn_layer
(
input
=
x
,
filter_size
=
3
,
num_filters
=
64
,
stride
=
2
,
if_act
=
True
,
name
=
'layer1_2'
)
la1
=
layer1
(
x
,
name
=
'layer2'
)
tr1
=
transition_layer
([
la1
],
[
256
],
channels_2
,
name
=
'tr1'
)
st2
=
stage
(
tr1
,
num_modules_2
,
channels_2
,
name
=
'st2'
)
tr2
=
transition_layer
(
st2
,
channels_2
,
channels_3
,
name
=
'tr2'
)
st3
=
stage
(
tr2
,
num_modules_3
,
channels_3
,
name
=
'st3'
)
tr3
=
transition_layer
(
st3
,
channels_3
,
channels_4
,
name
=
'tr3'
)
st4
=
stage
(
tr3
,
num_modules_4
,
channels_4
,
name
=
'st4'
)
# upsample
shape
=
st4
[
0
].
shape
height
,
width
=
shape
[
-
2
],
shape
[
-
1
]
st4
[
1
]
=
fluid
.
layers
.
resize_bilinear
(
st4
[
1
],
out_shape
=
[
height
,
width
])
st4
[
2
]
=
fluid
.
layers
.
resize_bilinear
(
st4
[
2
],
out_shape
=
[
height
,
width
])
st4
[
3
]
=
fluid
.
layers
.
resize_bilinear
(
st4
[
3
],
out_shape
=
[
height
,
width
])
feats
=
fluid
.
layers
.
concat
(
st4
,
axis
=
1
)
out
,
out_aux
=
ocr_module
(
feats
,
last_inp_channels
,
num_classes
,
ocr_mid_channels
,
ocr_key_channels
)
out
=
fluid
.
layers
.
resize_bilinear
(
out
,
input
.
shape
[
2
:])
out_aux
=
fluid
.
layers
.
resize_bilinear
(
out_aux
,
input
.
shape
[
2
:])
return
out
,
out_aux
def
ocnet
(
input
,
num_classes
):
logit
=
high_resolution_ocr_net
(
input
,
num_classes
)
return
logit
if
__name__
==
'__main__'
:
image_shape
=
[
-
1
,
3
,
769
,
769
]
image
=
fluid
.
data
(
name
=
'image'
,
shape
=
image_shape
,
dtype
=
'float32'
)
logit
=
ocnet
(
image
,
4
)
print
(
"logit:"
,
logit
.
shape
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录