提交 9fe66177 编写于 作者: M michaelowenliu

move dygraph/core to dygraph/paddleseg/core

上级 5e4c2d26
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .train import train
from .val import evaluate
from .infer import infer
__all__ = ['train', 'evaluate', 'infer']
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import paddle
import paddle.fluid as fluid
from paddle.fluid.dygraph.parallel import ParallelEnv
from paddle.fluid.io import DataLoader
# from paddle.incubate.hapi.distributed import DistributedBatchSampler
from paddle.io import DistributedBatchSampler
import paddle.nn.functional as F
import dygraph.utils.logger as logger
from dygraph.utils import load_pretrained_model
from dygraph.utils import resume
from dygraph.utils import Timer, calculate_eta
from .val import evaluate
def check_logits_losses(logits, losses):
len_logits = len(logits)
len_losses = len(losses['types'])
if len_logits != len_losses:
raise RuntimeError(
'The length of logits should equal to the types of loss config: {} != {}.'
.format(len_logits, len_losses))
def loss_computation(logits, label, losses):
check_logits_losses(logits, losses)
loss = 0
for i in range(len(logits)):
logit = logits[i]
if logit.shape[-2:] != label.shape[-2:]:
logit = F.resize_bilinear(logit, label.shape[-2:])
loss_i = losses['types'][i](logit, label)
loss += losses['coef'][i] * loss_i
return loss
def train(model,
train_dataset,
places=None,
eval_dataset=None,
optimizer=None,
save_dir='output',
iters=10000,
batch_size=2,
resume_model=None,
save_interval_iters=1000,
log_iters=10,
num_classes=None,
num_workers=8,
use_vdl=False,
losses=None,
ignore_index=255):
nranks = ParallelEnv().nranks
start_iter = 0
if resume_model is not None:
start_iter = resume(model, optimizer, resume_model)
if not os.path.isdir(save_dir):
if os.path.exists(save_dir):
os.remove(save_dir)
os.makedirs(save_dir)
if nranks > 1:
strategy = fluid.dygraph.prepare_context()
ddp_model = fluid.dygraph.DataParallel(model, strategy)
batch_sampler = DistributedBatchSampler(
train_dataset, batch_size=batch_size, shuffle=True, drop_last=True)
loader = DataLoader(
train_dataset,
batch_sampler=batch_sampler,
places=places,
num_workers=num_workers,
return_list=True,
)
if use_vdl:
from visualdl import LogWriter
log_writer = LogWriter(save_dir)
timer = Timer()
avg_loss = 0.0
iters_per_epoch = len(batch_sampler)
best_mean_iou = -1.0
best_model_iter = -1
train_reader_cost = 0.0
train_batch_cost = 0.0
timer.start()
iter = start_iter
while iter < iters:
for data in loader:
iter += 1
if iter > iters:
break
train_reader_cost += timer.elapsed_time()
images = data[0]
labels = data[1].astype('int64')
if nranks > 1:
logits = ddp_model(images)
loss = loss_computation(logits, labels, losses)
# loss = ddp_model(images, labels)
# apply_collective_grads sum grads over multiple gpus.
loss = ddp_model.scale_loss(loss)
loss.backward()
ddp_model.apply_collective_grads()
else:
logits = model(images)
loss = loss_computation(logits, labels, losses)
# loss = model(images, labels)
loss.backward()
optimizer.minimize(loss)
model.clear_gradients()
avg_loss += loss.numpy()[0]
lr = optimizer.current_step_lr()
train_batch_cost += timer.elapsed_time()
if (iter) % log_iters == 0 and ParallelEnv().local_rank == 0:
avg_loss /= log_iters
avg_train_reader_cost = train_reader_cost / log_iters
avg_train_batch_cost = train_batch_cost / log_iters
train_reader_cost = 0.0
train_batch_cost = 0.0
remain_iters = iters - iter
eta = calculate_eta(remain_iters, avg_train_batch_cost)
logger.info(
"[TRAIN] epoch={}, iter={}/{}, loss={:.4f}, lr={:.6f}, batch_cost={:.4f}, reader_cost={:.4f} | ETA {}"
.format((iter - 1) // iters_per_epoch + 1, iter, iters,
avg_loss * nranks, lr, avg_train_batch_cost,
avg_train_reader_cost, eta))
if use_vdl:
log_writer.add_scalar('Train/loss', avg_loss * nranks, iter)
log_writer.add_scalar('Train/lr', lr, iter)
log_writer.add_scalar('Train/batch_cost',
avg_train_batch_cost, iter)
log_writer.add_scalar('Train/reader_cost',
avg_train_reader_cost, iter)
avg_loss = 0.0
if (iter % save_interval_iters == 0
or iter == iters) and ParallelEnv().local_rank == 0:
current_save_dir = os.path.join(save_dir,
"iter_{}".format(iter))
if not os.path.isdir(current_save_dir):
os.makedirs(current_save_dir)
fluid.save_dygraph(model.state_dict(),
os.path.join(current_save_dir, 'model'))
fluid.save_dygraph(optimizer.state_dict(),
os.path.join(current_save_dir, 'model'))
if eval_dataset is not None:
mean_iou, avg_acc = evaluate(
model,
eval_dataset,
model_dir=current_save_dir,
num_classes=num_classes,
ignore_index=ignore_index,
iter_id=iter)
if mean_iou > best_mean_iou:
best_mean_iou = mean_iou
best_model_iter = iter
best_model_dir = os.path.join(save_dir, "best_model")
fluid.save_dygraph(
model.state_dict(),
os.path.join(best_model_dir, 'model'))
logger.info(
'Current evaluated best model in eval_dataset is iter_{}, miou={:4f}'
.format(best_model_iter, best_mean_iou))
if use_vdl:
log_writer.add_scalar('Evaluate/mIoU', mean_iou, iter)
log_writer.add_scalar('Evaluate/aAcc', avg_acc, iter)
model.train()
timer.restart()
if use_vdl:
log_writer.close()
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import numpy as np
import tqdm
import cv2
from paddle.fluid.dygraph.base import to_variable
import paddle.fluid as fluid
import paddle.nn.functional as F
import paddle
import dygraph.utils.logger as logger
from dygraph.utils import ConfusionMatrix
from dygraph.utils import Timer, calculate_eta
def evaluate(model,
eval_dataset=None,
model_dir=None,
num_classes=None,
ignore_index=255,
iter_id=None):
ckpt_path = os.path.join(model_dir, 'model')
para_state_dict, opti_state_dict = fluid.load_dygraph(ckpt_path)
model.set_dict(para_state_dict)
model.eval()
total_iters = len(eval_dataset)
conf_mat = ConfusionMatrix(num_classes, streaming=True)
logger.info(
"Start to evaluating(total_samples={}, total_iters={})...".format(
len(eval_dataset), total_iters))
timer = Timer()
timer.start()
for iter, (im, im_info, label) in tqdm.tqdm(
enumerate(eval_dataset), total=total_iters):
im = to_variable(im)
# pred, _ = model(im)
logits = model(im)
pred = paddle.argmax(logits[0], axis=1)
pred = pred.numpy().astype('float32')
pred = np.squeeze(pred)
for info in im_info[::-1]:
if info[0] == 'resize':
h, w = info[1][0], info[1][1]
pred = cv2.resize(pred, (w, h), cv2.INTER_NEAREST)
elif info[0] == 'padding':
h, w = info[1][0], info[1][1]
pred = pred[0:h, 0:w]
else:
raise Exception("Unexpected info '{}' in im_info".format(
info[0]))
pred = pred[np.newaxis, :, :, np.newaxis]
pred = pred.astype('int64')
mask = label != ignore_index
conf_mat.calculate(pred=pred, label=label, ignore=mask)
_, iou = conf_mat.mean_iou()
time_iter = timer.elapsed_time()
remain_iter = total_iters - iter - 1
logger.debug(
"[EVAL] iter_id={}, iter={}/{}, iou={:4f}, sec/iter={:.4f} | ETA {}"
.format(iter_id, iter + 1, total_iters, iou, time_iter,
calculate_eta(remain_iter, time_iter)))
timer.restart()
category_iou, miou = conf_mat.mean_iou()
category_acc, macc = conf_mat.accuracy()
logger.info("[EVAL] #Images={} mAcc={:.4f} mIoU={:.4f}".format(
len(eval_dataset), macc, miou))
logger.info("[EVAL] Category IoU: " + str(category_iou))
logger.info("[EVAL] Category Acc: " + str(category_acc))
logger.info("[EVAL] Kappa:{:.4f} ".format(conf_mat.kappa()))
return miou, macc
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册